Comparative study of clinical grade human tolerogenic dendritic cells

M Naranjo-Gómez, D Raïch-Regué, C Oñate, L Grau-López, C Ramo-Tello, R Pujol-Borrell, E Martínez-Cáceres, Francesc E Borràs, M Naranjo-Gómez, D Raïch-Regué, C Oñate, L Grau-López, C Ramo-Tello, R Pujol-Borrell, E Martínez-Cáceres, Francesc E Borràs

Abstract

Background: The use of tolerogenic DCs is a promising therapeutic strategy for transplantation and autoimmune disorders. Immunomodulatory DCs are primarily generated from monocytes (MDDCs) for in vitro experiments following protocols that fail to fulfil the strict regulatory rules of clinically applicable products. Here, we compared the efficacy of three different tolerance-inducing agents, dexamethasone, rapamycin and vitamin D3, on DC biology using GMP (Good Manufacturing Practice) or clinical grade reagents with the aim of defining their use for human cell therapy.

Methods: Tolerogenic MDDCs were generated by adding tolerogenic agents prior to the induction of maturation using TNF-α, IL-β and PGE2. We evaluated the effects of each agent on viability, efficiency of differentiation, phenotype, cytokine secretion and stability, the stimulatory capacity of tol-DCs and the T-cell profiles induced.

Results: Differences relevant to therapeutic applicability were observed with the cellular products that were obtained. VitD3-induced tol-DCs exhibited a slightly reduced viability and yield compared to Dexa-and Rapa-tol-DCs. Phenotypically, while Dexa-and VitD3-tol-DCs were similar to immature DCs, Rapa-tol-DCs were not distinguishable from mature DCs. In addition, only Dexa-and moderately VitD3-tol-DCs exhibited IL-10 production. Interestingly, in all cases, the cytokine secretion profiles of tol-DCs were not modified by a subsequent TLR stimulation with LPS, indicating that all products had stable phenotypes. Functionally, clearly reduced alloantigen T cell proliferation was induced by tol-DCs obtained using any of these agent. Also, total interferon-gamma (IFN-γ) secretion by T cells stimulated with allogeneic tol-DCs was reduced in all three cases, but only T cells co-cultured with Rapa-tol-DCs showed impaired intracellular IFN-γ production. In addition, Rapa-DCs promoted CD4+ CD127 low/negative CD25high and Foxp3+ T cells.

Conclusions: Our results demonstrate contrasting influences of different clinical-grade pharmacological agents on human tol-DC generation. This should be taken into account for decisions on the use of a specific agent for the appropriate cellular therapy in the context of a particular disease.

Figures

Figure 1
Figure 1
Survival of tol-DCs after clinical protocol differentiation. (A) Viability of MDDCs with or without immunomodulatory treatment after 6 days of differentiation. Plots are representative of 5 independent experiments. (B) Surviving cells are annexin V and 7AAD negative cells. (C) Yield obtained calculated as the number of MDDCs obtained from the initial number of monocytes that were cultured (n = 5). (paired t-test. * p ≤ 0.05; ** p ≤ 0.001; ***≤ 0.0001).
Figure 2
Figure 2
Dexa-and VitD3-DCs exhibit a semi-mature phenotype as compared with Mat-DCs. (A) DC expression of maturation-associated markers of immature DCs (Im-DCs), mature DCs (Mat-DCs) and tol-DCs. Surface expression of CD86-FITC, CD83-APC and HLA-DR-APCH7 staining on MDDCs. Each histogram is representative of 15 independent experiments. Isotype controls are shown in grey. (B) Results are mean fluorescence intensities from n = 11 cultures in the presence of Dexa, n = 15 cultures with Rapa-DCs and n = 11 cultures with VitD3-DCs. (paired t-test. * p ≤ 0.05; ** p ≤ 0.001; ***≤ 0.0001).
Figure 3
Figure 3
Tolerogenic dendritic cells (tol-DCs) exhibit an anti-inflammatory cytokine profile and stable phenotype. (A) IL-10 release by DCs in the presence or absence of immunomodulatory agents (Dexa, Rapa or VitD3) was measured after 48 h stimulation with a maturation cocktail. Supernatants were harvested and analysed for IL-10 production by MILLIPLEX (Dexa: n = 6; Rapa: n = 7 and VitD3: n = 11). (B) Stability of tol-DCs was evaluated after culture for 24 h in XVIVO medium containing LPS (without immunomodulatory agent). IL-10 and IL-23 production was determined for all DC conditions (with or without LPS). (n = 4. Statistical significance derived from a paired t-test. * p ≤ 0.05).
Figure 4
Figure 4
Tolerogenic dendritic cells (tol-DCs) suppress T cell proliferation without apoptosis induction. (A and B) Allogeneic T cells were stimulated with tol-DCs and compared for proliferation with stimulation by Mat-DCs and Im-DCs in mixed-lymphocyte reactions. Compared to Mat-DCs, tol-DCs potently inhibited allogeneic T cell proliferation at a level similar to Im-DCs (Dexa: n = 7; Rapa: n = 10; and Vit D3: n = 10). (C) Viability results (%Annexin V and 7AAD negative) for T cells co-cultured with different cellular products (n = 4).
Figure 5
Figure 5
Decreased production and secretion of IFN-γ by T lymphocytes stimulated with tol-DCs. Proliferating T lymphocytes were obtained from allostimulatory cultures. The production of interferon (IFN)-γ was measured by intracellular staining after restimulating the cells with PMA+Io in the presence of brefeldin for 5 h. (A) First row (i) shows gating CD3+ cells. The second row plots (ii) indicate the proportion of total IFN-γ producing cells. Third row (iii) shows the percentages of cells that responded to allostimulation (CFSElow) and produced IFN-γ. The numbers inside the plots indicate the percentage of cells in each quadrant or boxes (a representative experiment). (B) Summary of the results of the total intracellular IFN-γ (Upper Left, UL) production with Dexa-(n = 4), Rapa-(n = 7) and Vit D3 (n = 7) activated cultures relative to Mat-DCs (taken as 100% production). (C) Percentage of IFN-γ producing T cells that responded to allostimulation (CFSElow CD3+ cells). Each symbol represents an individual sample. Significant differences are indicated (** p < 0,001; paired t-test).
Figure 6
Figure 6
Rapa-DCs promote CD4+CD25hiCD127lowFoxP3+ induction from blast T cells. After 6 days of culture without re-stimulation and any supplemental cytokines, cell sizes were evaluated by FACS by plotting forward scatter (FSC) versus side scatter (SSC) parameters. Small (solid line) non-blast cells and large (dotted line) blast cells are circled. (A) Phenotype of T cells as CD4+, Foxp3+ and CD25+ with low or null CD127 expression. One of 6 representative experiments is shown. (B) Summary of percentages of T cells in non-blast (left) and blast (right) cells. (* p ≤ 0.05, n = 6, paired t-test).

References

    1. Miller SD, Turley DM, Podojil JR. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat Rev Immuno. 2007;7(9):665–77. doi: 10.1038/nri2153.
    1. van Duivenvoorde LM, van Mierlo GJ, Boonman ZF, Toes RE. Dendritic cells: vehicles for tolerance induction and prevention of autoimmune diseases. Immunobiology. 2006;211(6-8):627–32. doi: 10.1016/j.imbio.2006.05.014.
    1. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol. 2007;7(8):610–21. doi: 10.1038/nri2132.
    1. Chuang JJ, Kleist C, Sandra-Petrescu F, Iancu M, Wang D, Opelz G, Terness P. Suppressive dendritic cells as a tool for controlling allograft rejection in organ transplantation: promises and difficulties. Hum Immunol. 2008;69(3):p. 165–73.
    1. van Kooten C, Lombardi G, Gelderman KA, Sagoo P, Buckland M, Lechler R, Cuturi MC. Dendritic Cells as a Tool to Induce Transplantation Tolerance: Obstacles and Opportunities. Transplantation. 2011;15(91(1)):2–7.
    1. Thomson AW, Robbins PD. Tolerogenic dendritic cells for autoimmune disease and transplantation. Ann Rheum Dis. 2008;67(Suppl 3):90–6. iii.
    1. Hilkens CM, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol. pp. p. 156–83.
    1. Torres-Aguilar H, Blank M, Jara LJ, Shoenfeld Y. Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity. Autoimmun Rev. 2010;10(1):8–17. doi: 10.1016/j.autrev.2010.07.015.
    1. Torres-Aguilar H, Aguilar-Ruiz SR, González-Pérez G, Munguía R, Bajaña S, Meraz-Ríos MA, Sánchez-Torres C. Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J Immunol. 2010;184(4):1765–75. doi: 10.4049/jimmunol.0902133.
    1. Luther C, Adamopoulou E, Stoeckle C, Brucklacher-Waldert V, Rosenkranz D, Stoltze L, Lauer S, Poeschel S, Melms A, Tolosa E. Prednisolone treatment induces tolerogenic dendritic cells and a regulatory milieu in myasthenia gravis patients. J Immunol. 2009;183(2):841–8. doi: 10.4049/jimmunol.0802046.
    1. Harry RA, Anderson AE, Isaacs JD, Hilkens CM. Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis. 2010;69(11):2042–50. doi: 10.1136/ard.2009.126383.
    1. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. doi: 10.1038/32588.
    1. Morelli AE, Thomson AW. Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol Rev. 2003;196:125–46. doi: 10.1046/j.1600-065X.2003.00079.x.
    1. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96. doi: 10.1146/annurev.iy.09.040191.001415.
    1. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711. doi: 10.1146/annurev.immunol.21.120601.141040.
    1. Tatsumi T, Storkus WJ. Dendritic cell-based vaccines and therapies for cancer. Expert Opin Biol Ther. 2002;2(8):919–28. doi: 10.1517/14712598.2.8.919.
    1. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10(5):475–80. doi: 10.1038/nm1039.
    1. Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity. 2010;33(4):464–78. doi: 10.1016/j.immuni.2010.10.007.
    1. Palucka K, Ueno H, Fay J, Banchereau J. Harnessing dendritic cells to generate cancer vaccines. Ann N Y Acad Sci. 2009;1174:88–98. doi: 10.1111/j.1749-6632.2009.05000.x.
    1. Peng JC, Thomas R, Nielsen LK. Generation and maturation of dendritic cells for clinical application under serum-free conditions. J Immunother. 2005;28(6):599–609. doi: 10.1097/01.cji.0000175491.21099.04.
    1. Napoletano C, Pinto D, Bellati F, Taurino F, Rahimi H, Tomao F, Panici PB, Rughetti A, Frati L, Nuti M. A comparative analysis of serum and serum-free media for generation of clinical grade DCs. J Immunother. 2007;30(5):567–76. doi: 10.1097/CJI.0b013e318046f396.
    1. D'Argenio DA, Wilson CB. A decade of vaccines: Integrating immunology and vaccinology for rational vaccine design. Immunity. pp. p. 437–40.
    1. Germain RN. Vaccines and the future of human immunology. Immunity. 2010;33(4):441–50. doi: 10.1016/j.immuni.2010.09.014.
    1. Hackstein H, Thomson AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol. 2004;4(1):24–34. doi: 10.1038/nri1256.
    1. Turnquist HR, Fischer RT, Thomson AW. Pharmacological modification of dendritic cells to promote their tolerogenicity in transplantation. Methods Mol Biol. 2010;595:135–48. doi: 10.1007/978-1-60761-421-0_8.
    1. Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J Immunol. 2005;174(11):7433–9.
    1. Min WP, Zhou D, Ichim TE, Strejan GH, Xia X, Yang J, Huang X, Garcia B, White D, Dutartre P, Jevnikar AM, Zhong R. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol. 2003;170(3):1304–12.
    1. Huang H, Dawicki W, Zhang X, Town J, Gordon JR. Tolerogenic dendritic cells induce CD4+CD25hiFoxp3+ regulatory T cell differentiation from CD4+CD25-/loFoxp3-effector T cells. J Immunol. 2010;185(9):5003–10. doi: 10.4049/jimmunol.0903446.
    1. Hill M, Cuturi MC. Negative vaccination by tolerogenic dendritic cells in organ transplantation. Curr Opin Organ Transplant. 2010. in press .
    1. Stoop JN, Harry RA, von Delwig A, Isaacs JD, Robinson JH, Hilkens CM. Therapeutic effect of tolerogenic dendritic cells in established collagen-induced arthritis is associated with a reduction in Th17 responses. Arthritis Rheum. 2010;62(12):3656–65. doi: 10.1002/art.27756.
    1. Quintana FJ, Murugaiyan G, Farez MF, Mitsdoerffer M, Tukpah AM, Burns EJ, Weiner HL. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2010;107(48):20768–73. doi: 10.1073/pnas.1009201107.
    1. van Duivenvoorde LM, Louis-Plence P, Apparailly F, van der Voort EI, Huizinga TW, Jorgensen C, Toes RE. Antigen-specific immunomodulation of collagen-induced arthritis with tumor necrosis factor-stimulated dendritic cells. Arthritis Rheum. 2004;50(10):3354–64. doi: 10.1002/art.20513.
    1. van Duivenvoorde LM, Han WG, Bakker AM, Louis-Plence P, Charbonnier LM, Apparailly F, van der Voort EI, Jorgensen C, Huizinga TW, Toes RE. Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms. J Immunol. 2007;179(3):1506–15.
    1. Martin E, Capini C, Duggan E, Lutzky VP, Stumbles P, Pettit AR, O'Sullivan B, Thomas R. Antigen-specific suppression of established arthritis in mice by dendritic cells deficient in NF-kappaB. Arthritis Rheum. 2007;56(7):2255–66. doi: 10.1002/art.22655.
    1. Adorini L. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad Sci. 2003;987:258–61. doi: 10.1111/j.1749-6632.2003.tb06057.x.
    1. Marin-Gallen S, Clemente-Casares X, Planas R, Pujol-Autonell I, Carrascal J, Carrillo J, Ampudia R, Verdaguer J, Pujol-Borrell R, Borràs FE, Vives-Pi M. Dendritic cells pulsed with antigen-specific apoptotic bodies prevent experimental type 1 diabetes. Clin Exp Immunol. 2010;160(2):207–14.
    1. Nestle FO, Banchereau J, Hart D. Dendritic cells: On the move from bench to bedside. Nat Med. 2001;7(7):761–5. doi: 10.1038/89863.
    1. Cerundolo V, Hermans IF, Salio M. Dendritic cells: a journey from laboratory to clinic. Nat Immunol. 2004;5(1):7–10.
    1. Bluestone JA, Thomson AW, Shevach EM, Weiner HL. What does the future hold for cell-based tolerogenic therapy? Nat Rev Immunol. 2007;7(8):650–4. doi: 10.1038/nri2137.
    1. Rescigno M. Dendritic cells in tolerance induction for the treatment of autoimmune diseases. Eur J Immunol. 2010;40(8):2119–23. doi: 10.1002/eji.201040474.
    1. Steinman RM. Some active areas of DC research and their medical potential. Eur J Immunol. 2010;40(8):2085–8. doi: 10.1002/eji.201040733.
    1. Soldevila B, Alonso N, Martínez-Arconada MJ, Morillas RM, Planas R, Sanmartí AM, Martínez-Cáceres EM. A prospective study of T-and B-lymphocyte subpopulations, CD81 expression levels on B cells and regulatory CD4(+) CD25(+) CD127(low/-) FoxP3(+) T cells in patients with chronic HCV infection during pegylated interferon-alpha2a plus ribavirin treatment. J Viral Hepat. 2010.
    1. Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435–40. doi: 10.1182/blood-2006-03-006403.
    1. Adorini L, Penna G. Induction of tolerogenic dendritic cells by vitamin D receptor agonists. Handb Exp Pharmacol. 2009. pp. 251–73.
    1. van Kooten C, Stax AS, Woltman AM, Gelderman KA. Handbook of experimental pharmacology "dendritic cells": the use of dexamethasone in the induction of tolerogenic DCs. Handb Exp Pharmacol. 2009. pp. 233–49.
    1. Fischer R, Turnquist HR, Taner T, Thomson AW. Use of rapamycin in the induction of tolerogenic dendritic cells. Handb Exp Pharmacol. 2009. pp. 215–32.
    1. Anderson AE, Swan DJ, Sayers BL, Harry RA, Patterson AM, von Delwig A, Robinson JH, Isaacs JD, Hilkens CM. LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J Leukoc Biol. 2009;85(2):243–50. doi: 10.1189/jlb.0608374.
    1. Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000;164(5):2405–11.
    1. Fazekasova H, Golshayan D, Read J, Tsallios A, Tsang JY, Dorling A, George AJ, Lechler RI, Lombardi G, Mirenda V. Regulation of rat and human T-cell immune response by pharmacologically modified dendritic cells. Transplantation. 2009;87(11):1617–28. doi: 10.1097/TP.0b013e3181a5504c.
    1. Woltman AM, van der Kooij SW, de Fijter JW, van Kooten C. Maturation-resistant dendritic cells induce hyporesponsiveness in alloreactive CD45RA+ and CD45RO+ T-cell populations. Am J Transplant. 2006;6(11):2580–91. doi: 10.1111/j.1600-6143.2006.01520.x.
    1. Hackstein H, Taner T, Zahorchak AF, Morelli AE, Logar AJ, Gessner A, Thomson AW. Rapamycin inhibits IL-4--induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003;101(11):4457–63. doi: 10.1182/blood-2002-11-3370.
    1. Steinbrink K, Wölfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol. 1997;159(10):4772–80.
    1. Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M, Zlabinger GJ, Pulendran B, Hörl WH, Säemann MD, Weichhart T. A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol. 2010;185(7):3919–31. doi: 10.4049/jimmunol.1000296.
    1. Karimi MH, Ebadi P, Pourfathollah AA, Moazzeni M, Soheili ZS, Samiee S. Comparison of Three Techniques for Generation of Tolerogenic Dendritic Cells: siRNA, Oligonucleotide Antisense, and Antibody Blocking. Hybridoma (Larchmt) 2010;29(6):473–80. doi: 10.1089/hyb.2010.0060.
    1. Svajger U, Obermajer N, Jeras M. Novel findings in drug-induced dendritic cell tolerogenicity. Int Rev Immunol. 2010;29(6):574–607. doi: 10.3109/08830185.2010.522280.
    1. Xiao BG, Huang YM, Link H. Tolerogenic dendritic cells: the ins and outs of outcome. J Immunother. 2006;29(5):465–71. doi: 10.1097/01.cji.0000210387.55951.8b.
    1. Pulendran B, Tang H, Manicassamy S. Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol. 2010;11(8):647–55. doi: 10.1038/ni.1894.
    1. Xia CQ, Peng R, Beato F, Clare-Salzler MJ. Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity. Scand J Immunol. 2005;62(1):45–54. doi: 10.1111/j.1365-3083.2005.01640.x.
    1. Xing N, L Maldonado ML, Bachman LA, McKean DJ, Kumar R, Griffin MD. Distinctive dendritic cell modulation by vitamin D(3) and glucocorticoid pathways. Biochem Biophys Res Commun. 2002;297(3):645–52. doi: 10.1016/S0006-291X(02)02262-3.
    1. Griffin MD, Xing N, Kumar R. Gene expression profiles in dendritic cells conditioned by 1alpha,25-dihydroxyvitamin D3 analog. J Steroid Biochem Mol Biol. 2004;89-90(1-5):443–8.
    1. Monti P, Mercalli A, Leone BE, Valerio DC, Allavena P, Piemonti L. Rapamycin impairs antigen uptake of human dendritic cells. Transplantation. 2003;75(1):137–45. doi: 10.1097/00007890-200301150-00025.
    1. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol. 2001;22(7):394–400. doi: 10.1016/S1471-4906(01)01952-4.
    1. Kubsch S, Graulich E, Knop J, Steinbrink K. Suppressor activity of anergic T cells induced by IL-10-treated human dendritic cells: association with IL-2-and CTLA-4-dependent G1 arrest of the cell cycle regulated by p27Kip1. Eur J Immunol. 2003;33(7):1988–97. doi: 10.1002/eji.200323600.
    1. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105(12):4743–8. doi: 10.1182/blood-2004-10-3932.
    1. Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol. 2010;108:111–65.
    1. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood. 2002;99(7):2468–76. doi: 10.1182/blood.V99.7.2468.
    1. Cobbold SP, Adams E, Nolan KF, Regateiro FS, Waldmann H. Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol Rev. 2010;236:203–18. doi: 10.1111/j.1600-065X.2010.00913.x.
    1. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42. doi: 10.1111/j.1600-065X.2010.00923.x.
    1. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101(5):455–8. doi: 10.1016/S0092-8674(00)80856-9.
    1. Shevach EM, McHugh RS, Thornton AM, Piccirillo C, Natarajan K, Margulies DH. Control of autoimmunity by regulatory T cells. Adv Exp Med Biol. 2001;490:21–32. doi: 10.1007/978-1-4615-1243-1_3.
    1. Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol. 2001;2(9):816–22. doi: 10.1038/ni0901-816.
    1. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203(7):1701–11. doi: 10.1084/jem.20060772.
    1. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500. doi: 10.1038/nri2785.
    1. Simonetta F, Chiali A, Cordier C, Urrutia A, Girault I, Bloquet S, Tanchot C, Bourgeois C. Increased CD127 expression on activated FOXP3+CD4+ regulatory T cells. Eur J Immuno. 2010;40(9):2528–38. doi: 10.1002/eji.201040531.
    1. Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol. 2008;83(5):1230–9. doi: 10.1189/jlb.1207851.
    1. Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol. 2004;172(7):4100–10.
    1. Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M, Adorini L. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood. 2005;106(10):3490–7. doi: 10.1182/blood-2005-05-2044.
    1. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T regulatory cells. Immunol Rev. 2001;182:68–79. doi: 10.1034/j.1600-065X.2001.1820105.x.
    1. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50. doi: 10.1111/j.0105-2896.2006.00420.x.
    1. Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207–14. doi: 10.1034/j.1600-065X.2001.1820117.x.

Source: PubMed

3
Prenumerera