Pilot safety study of intrabronchial instillation of bone marrow-derived mononuclear cells in patients with silicosis

Marcelo M Morales, Sérgio A L Souza, Luiz Paulo Loivos, Marina A Lima, Amir Szklo, Leandro Vairo, Taís H K Brunswick, Bianca Gutfilen, Miquéias Lopes-Pacheco, Alberto J Araújo, Alexandre P Cardoso, Regina C Goldenberg, Patricia R M Rocco, Lea M B Fonseca, José R Lapa e Silva, Marcelo M Morales, Sérgio A L Souza, Luiz Paulo Loivos, Marina A Lima, Amir Szklo, Leandro Vairo, Taís H K Brunswick, Bianca Gutfilen, Miquéias Lopes-Pacheco, Alberto J Araújo, Alexandre P Cardoso, Regina C Goldenberg, Patricia R M Rocco, Lea M B Fonseca, José R Lapa e Silva

Abstract

Background: Silicosis is an occupational disease for which no effective treatment is currently known. Systemic administration of bone marrow-derived mononuclear cells (BMDMCs) has shown to be safe in lung diseases. However, so far, no studies have analyzed whether bronchoscopic instillation of autologous BMDMCs is a safe route of administration in patients with silicosis.

Methods: We conducted a prospective, non-randomized, single-center longitudinal study in five patients. Inclusion criteria were age 18-50 years, chronic and accelerated silicosis, forced expiratory volume in 1 s <60 % and >40 %, forced vital capacity ≥60 % and arterial oxygen saturation >90 %. The exclusion criteria were smoking, active tuberculosis, neoplasms, autoimmune disorders, heart, liver or renal diseases, or inability to undergo bronchoscopy. BMDMCs were administered through bronchoscopy (2 × 10(7) cells) into both lungs. Physical examination, laboratory evaluations, quality of life questionnaires, computed tomography of the chest, lung function tests, and perfusion scans were performed before the start of treatment and up to 360 days after BMDMC therapy. Additionally, whole-body and planar scans were evaluated 2 and 24 h after instillation.

Results: No adverse events were observed during and after BMDMC administration. Lung function, quality of life and radiologic features remained stable throughout follow-up. Furthermore, an early increase of perfusion in the base of both lungs was observed and sustained after BMDMC administration.

Conclusion: Administration of BMDMCs through bronchoscopy appears to be feasible and safe in accelerated and chronic silicosis. This pilot study provides a basis for prospective randomized trials to assess the efficacy of this treatment approach. CLINICAL TRIALS.

Gov identifier: NCT01239862 Date of Registration: November 10, 2010.

Figures

Fig. 1
Fig. 1
Evolution of quality of life domains (physical functioning, role-physical, bodily pain, general health, vitality, social functioning, role-emotional, mental health), as measured by the SF-36 questionnaire, during the 360 days follow-up period. All parameters remained stable throughout the observation period. Values are median (25th–75th percentile) of 5 patients at each time point
Fig. 2
Fig. 2
a Representative image of whole-body scintigraphy showing the biodistribution of 99mTc-labeled BMDMCs 2 h after instillation in one patient; stem cells are seen mainly in the lungs. b There is also uptake in the mouth and stomach, due to minor swallowing during instillation. RL, right lung; LL, left lung; BMDMCs, bone marrow–derived mononuclear cells; 99mTc-BMDMCs, 99mTc-labeled bone marrow–derived mononuclear cells
Fig. 3
Fig. 3
Representative image of CT and 99mTc-BMDSC SPECT showing correspondence of a left lung lesion (green triangular area). CT, computed tomography; 99mTc-BMDSC, 99mTc-labeled bone marrow–derived mononuclear cells; SPECT, single-photon emission computed tomography
Fig. 4
Fig. 4
a 99mTc-macroaggregated albumin perfusion scintigraphy sequences from before cell therapy until 360 days after cell therapy, showing normal uptake at the right base and decreased uptake at both apexes. Improvement in the left base can be seen from day 120 to day 360. b Values are median (25th–75th percentile) of 5 patients at each time point. Statistical analysis of lung perfusion, showing significant differences mainly in the base of the right lungs from day 30 to day 360 as compared with baseline. RL, right lung; LL, left lung

References

    1. Greenberg MI, Waksman J, Curtis J. Silicosis: a review. Dis Mon. 2007;53(8):394–416. doi: 10.1016/j.disamonth.2007.09.020.
    1. Huaux F. New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol. 2007;7(2):168–173. doi: 10.1097/ACI.0b013e32802bf8a5.
    1. Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379(9830):2008–2018. doi: 10.1016/S0140-6736(12)60235-9.
    1. Weiss DJ. Concise review: current status of stem cell and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25. doi: 10.1002/stem.1506.
    1. Silva JD, Paredes BD, Araújo IM, Lopes-Pacheco M, Oliveira MV, Suhett GD, Faccioli LA, Assis E, Castro-Faria-Neto HC, Goldenberg RC, Capelozzi VL, Morales MM, Pelosi P, Xisto DG, Rocco PR. Effects of bone marrow-derived mononuclear cells from healthy or acute respiratory distress syndrome donors on recipient lung-injured mice. Crit Care Med. 2014;42(7):e510–e524. doi: 10.1097/CCM.0000000000000296.
    1. Maron-Gutierrez T, Castiglione RC, Xisto DG, Oliveira MG, Cruz FF, Peçanha R, Carreira-Junior H, Ornellas DS, Moraes MO, Takiya CM, Rocco PR, Morales MM. Bone marrow-derived mononuclear cell therapy attenuates silica-induced lung fibrosis. Eur Respir J. 2011;37(5):1217–1225. doi: 10.1183/09031936.00205009.
    1. Lopes-Pacheco M, Xisto DG, Ornellas FM, Antunes MA, Abreu SC, Rocco PR, Takiya CM, Morales MM. Repeated administration of bone marrow-derived cells prevents disease progression in experimental silicosis. Cell Physiol Biochem. 2013;32(6):1681–1694. doi: 10.1159/000356603.
    1. Lopes-Pacheco M, Ventura TG, de Oliveira HD, Monção-Ribeiro LC, Gutfilen B, de Souza AS, Rocco PR, Borojevic R, Morales MM, Takiya CM. Infusion of bone marrow mononuclear cells reduces lung fibrosis but not inflammation in the late stages of murine silicosis. PLoS One. 2014;9(10):e109982. doi: 10.1371/journal.pone.0109982.
    1. Terra-Filho M, Santos UP. Silicose. J Bras Pneumol. 2006;32(Suppl 2):S59–S65.
    1. Barbosa da Fonseca LM, Battistella V, de Freitas GR, Gutfilen B, Dos Santos Goldenberg RC, Maiolino A, Wajnberg E, Rosado de Castro PH, Mendez-Otero R, Andre C. Early tissue distribution of bone marrow mononuclear cells after intra-arterial delivery in a patient with chronic stroke. Circulation. 2009;120(6):539–541. doi: 10.1161/CIRCULATIONAHA.109.863084.
    1. Barbosa da Fonseca LM, Gutfilen B, Rosado de Castro PH, Battistella V, Goldenberg RC, Kasai-Brunswick T, Chagas CL, Wajnberg E, Maiolino A, Salles Xavier S, Andre C, Mendez-Otero R, de Freitas GR. Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp Neurol. 2010;221(1):122–128. doi: 10.1016/j.expneurol.2009.10.010.
    1. Ohno Y, Hatabu H, Higashino T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K. Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. AJR Am J Roentgenol. 2004;182(1):73–78. doi: 10.2214/ajr.182.1.1820073.
    1. Ribeiro-Paes JT, Bilaqui A, Greco O, Ruiz MA, Marcelino MY, Stessuk T, de Faria CA, Lago MR. Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema. Int J Chron Obstruct Pulmon Dis. 2011;6:63–71. doi: 10.2147/COPD.S15292.
    1. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–1598. doi: 10.1378/chest.12-2094.
    1. Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Okionomou A, Zissimopoulos A, Boussios N, Gritzalis D, Antoniadis A, Froudarakis M, Kolios G, Bouros D. A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med. 2013;11:171. doi: 10.1186/1479-5876-11-171.
    1. Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, Yerkovich ST, Khalil D, Atkinson KM, Hopkins PM. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19:1013–1018. doi: 10.1111/resp.12343.
    1. Hicks A, Jolkkonen J. Challenges and possibilities of intravascular cell therapy in stroke. Acta Neurobiol Exp (Wars) 2009;69(1):1–11.
    1. Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. Stem cell transplantation: the lung barrier. Transplant Proc. 2007;39(2):573–576. doi: 10.1016/j.transproceed.2006.12.019.
    1. Bonios M, Terrovitis J, Chang CY, Engles JM, Higuchi T, Lautamäki R, Yu J, Fox J, Pomper M, Wahl RL, Tsui BM, O'Rourke B, Bengel FM, Marbán E, Abraham MR. Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. J Nucl Cardiol. 2011;18(3):443–450. doi: 10.1007/s12350-011-9369-9.
    1. Vasconcelos-dos-Santos A, Rosado-de-Castro PH, Lopesde Souza SA, da Costa Silva J, Ramos AB, Rodriguez de Freitas G, Barbosa da Fonseca LM, Gutfilen B, Mendez-Otero R. Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: is there a difference in biodistribution and efficacy? Stem Cell Res. 2012;9(1):1–8. doi: 10.1016/j.scr.2012.02.002.
    1. Barbosa da Fonseca LM, Xavier SS, Rosado de Castro PH, Lima RS, Gutfilen B, Goldenberg RC, Maiolino A, Chagas CL, Pedrosa RC, Campos de Carvalho AC. Biodistribution of bone marrow mononuclear cells in chronic chagasic cardiomyopathy after intracoronary injection. Int J Cardiol. 2011;149(3):310–314. doi: 10.1016/j.ijcard.2010.02.008.
    1. Rosado-de-Castro PH, Schmidt F d R, Battistella V, Lopes de Souza SA, Gutfilen B, Goldenberg RC, Kasai-Brunswick TH, Vairo L, Silva RM, Wajnberg E, Alvarenga Americano do Brasil PE, Gasparetto EL, Maiolino A, Alves-Leon SV, Andre C, Mendez-Otero R, Rodriguez de Freitas G, Barbosa da Fonseca LM. Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med. 2013;8(2):145–155. doi: 10.2217/rme.13.2.
    1. Banerjee SR, Maresca KP, Francesconi L, Valliant J, Babich JW, Zubieta J. New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design. Nucl Med Biol. 2005;32(1):1–20. doi: 10.1016/j.nucmedbio.2004.09.001.
    1. Cowie RL. The influence of silicosis on deteriorating lung function in gold miners. Chest. 1998;113(2):340–343. doi: 10.1378/chest.113.2.340.
    1. Ochmann U, Kotschy-Lang N, Raab W, Kellberger J, Nowak D, Jörres RA. Long-term efficacy of pulmonary rehabilitation in patients with occupational respiratory diseases. Respiration. 2012;84(5):396–405. doi: 10.1159/000337271.
    1. Lassance RM, Prota LF, Maron-Gutierrez T, Garcia CS, Abreus SC, Pássaro CP, Xisto DG, Castiglione RC, Carreira H Jr, Ornellas DS, Santana MC, Souza SA, Gutfilen B, Fonseca LM, Rocco PR, Morales MM. Intratracheal instillation of boné marrow-derived cell in na experimental modelo f silicosis. Respir Physiol Neurobiol. 2009;169(3):227–33.
    1. Glassberg MK, Hare JM, Toonkell RL, Mathay MA. Reply: idiopathic pulmonary fibrosis: a degenerative disease requiring a regenerative approach. Am J Resp Crit Care Med. 2013;188(2):253–254. doi: 10.1164/rccm.201302-0244LE.

Source: PubMed

3
Prenumerera