Traumatic Brain Injury and Alzheimer's Disease: The Cerebrovascular Link

Jaime Ramos-Cejudo, Thomas Wisniewski, Charles Marmar, Henrik Zetterberg, Kaj Blennow, Mony J de Leon, Silvia Fossati, Jaime Ramos-Cejudo, Thomas Wisniewski, Charles Marmar, Henrik Zetterberg, Kaj Blennow, Mony J de Leon, Silvia Fossati

Abstract

Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating neurological disorders, whose complex relationship is not completely understood. Cerebrovascular pathology, a key element in both conditions, could represent a mechanistic link between Aβ/tau deposition after TBI and the development of post concussive syndrome, dementia and chronic traumatic encephalopathy (CTE). In addition to debilitating acute effects, TBI-induced neurovascular injuries accelerate amyloid β (Aβ) production and perivascular accumulation, arterial stiffness, tau hyperphosphorylation and tau/Aβ-induced blood brain barrier damage, giving rise to a deleterious feed-forward loop. We postulate that TBI can initiate cerebrovascular pathology, which is causally involved in the development of multiple forms of neurodegeneration including AD-like dementias. In this review, we will explore how novel biomarkers, animal and human studies with a focus on cerebrovascular dysfunction are contributing to the understanding of the consequences of TBI on the development of AD-like pathology.

Keywords: Alzheimer's disease; Aβ; Biomarkers; Cerebrovascular pathology; Tau; Traumatic brain injury.

Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
TBI and AD are connected in a complex interplay. Experimental data shows that Aβ and tau release leads to cerebrovascular injury and that their deposition around cerebral microvessels has a deleterious chronic effect. Secondarily, cerebrovascular injury is known to induce Aβ and tau deposition in a feedback loop that ultimately may lead to cognitive impairment and the development of AD-like pathology. Together with Aβ and tau accumulation, TBI induces endothelial cell (EC) damage, a modulation on junction proteins (JPs) and matrix metalloproteinase (MMPs) expression and ultimately an impairment of blood brain barrier (BBB) permeability. Because TBI is a relatively homogeneous disease compared to AD, analyzing biomarkers of TBI and their relationship with post-concussive symptoms and dementia offers a promising framework to better understand the relationship between cerebrovascular dysfunction (CVD) and the development of dementia.
Fig. 2
Fig. 2
Biomarker studies to understand the cerebrovascular link between TBI and AD. Multimodal biomarker studies can be used to better understand the complex interplay between TBI and the development of AD-like pathology. TBI induces early and subacute cerebrovascular function impairment that can be monitored by neuroimaging techniques. This includes blood flow impairment, hypoperfusion and ischemia, changes in brain metabolism and also an impairment of brain clearance systems. If these phenomena are not isolated but sustained because of repeated TBI events or severe TBI, secondary cerebrovascular damage can occur, including vascular damage, BBB abnormal permeability and microbleeds that can be also detected by neuroimaging techniques. Cerebrovascular function impairment and damage induce perivascular and parenchymal accumulation of tau and Aβ in the brain. All these processes act in a feed-forward loop, as an increase in perivascular accumulation of tau and Aβ induce vascular damage, limits vascular function and therefore impairment in blood flow and brain perfusion. These events induce changes in CSF, peripheral blood and biofluids molecules like tau, P-Tau, Aβ monomers/oligomers, metalloproteases and miRNAs, among others.
Fig. 3
Fig. 3
Molecular events involved in cerebrovascular dysfunction. TBI and AD share certain pathological features where cerebrovascular dysfunction (CVD) plays a fundamental role. (Left) Cerebrovascular alterations taking place in the context of the neurovascular unit (NVU) in TBI and AD. (Right) Recent works in TBI and AD showing cerebrovascular alterations. Rev: Reviewed in.

References

    1. Abdul-Muneer P.M., Schuetz H., Wang F., Skotak M., Jones J., Gorantla S., Zimmerman M.C., Chandra N., Haorah J. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic. Biol. Med. 2013;60:282–291.
    1. Abisambra J.F., Scheff S. Brain injury in the context of tauopathies. J. Alzheimers Dis. 2014;40:495–518.
    1. Acharya S., Srivastava K.R., Nagarajan S., Lapidus L.J. Monomer dynamics of Alzheimer peptides and kinetic control of early aggregation in Alzheimer's disease. ChemPhysChem. 2016;17:3470–3479.
    1. Albalawi T., Hamner J.W., Lapointe M., Meehan W.P.R., Tan C.O. The relationship between cerebral vasoreactivity and post-concussive symptom severity. J. Neurotrauma. 2017;34:2700–2705.
    1. Andreasson K.I., Bachstetter A.D., Colonna M., Ginhoux F., Holmes C., Lamb B., Landreth G., Lee D.C., Low D., Lynch M.A., Monsonego A., O'banion M.K., Pekny M., Puschmann T., Russek-Blum N., Sandusky L.A., Selenica M.L., Takata K., Teeling J., Town T., VAN Eldik L.J. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J. Neurochem. 2016;138:653–693.
    1. Andrews A.M., Lutton E.M., Merkel S.F., Razmpour R., Ramirez S.H. Mechanical injury induces brain endothelial-derived microvesicle release: implications for cerebral vascular injury during traumatic brain injury. Front. Cell. Neurosci. 2016;10:43.
    1. Archer T., Svensson K., Alricsson M. Physical exercise ameliorates deficits induced by traumatic brain injury. Acta Neurol. Scand. 2012;125:293–302.
    1. Astafiev S.V., Shulman G.L., Metcalf N.V., Rengachary J., Macdonald C.L., Harrington D.L., Maruta J., Shimony J.S., Ghajar J., Diwakar M., Huang M.X., Lee R.R., Corbetta M. Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury. J. Neurotrauma. 2015;32:1254–1271.
    1. Austin S.A., Katusic Z.S. Loss of endothelial nitric oxide synthase promotes p25 generation and tau phosphorylation in a murine model of Alzheimer's disease. Circ. Res. 2016;119:1128–1134.
    1. Blair L.J., Frauen H.D., Zhang B., Nordhues B.A., Bijan S., Lin Y.C., Zamudio F., Hernandez L.D., Sabbagh J.J., Selenica M.L., Dickey C.A. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol. Commun. 2015;3:8.
    1. Blennow K., Hardy J., Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012;76:886–899.
    1. Blennow K., Dubois B., Fagan A.M., Lewczuk P., DE Leon M.J., Hampel H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease. Alzheimers Dement. 2015;11:58–69.
    1. Blennow K., Brody D.L., Kochanek P.M., Levin H., Mckee A., Ribbers G.M., Yaffe K., Zetterberg H. Traumatic brain injuries. Nat. Rev. Dis. Primers. 2016;2:16084.
    1. Bosche B., Molcanyi M., Rej S., Doeppner T.R., Obermann M., Muller D.J., Das A., Hescheler J., Macdonald R.L., Noll T., Hartel F.V. Low-dose lithium stabilizes human endothelial barrier by decreasing MLC phosphorylation and universally augments cholinergic vasorelaxation capacity in a direct manner. Front. Physiol. 2016;7:593.
    1. Clark A.L., Sorg S.F., Schiehser D.M., Luc N., Bondi M.W., Sanderson M., Werhane M.L., Delano-Wood L. Deep white matter hyperintensities affect verbal memory independent of PTSD symptoms in veterans with mild traumatic brain injury. Brain Inj. 2016;30:864–871.
    1. Copin J.C., Rebetez M.M., Turck N., Robin X., Sanchez J.C., Schaller K., Gasche Y., Walder B. Matrix metalloproteinase 9 and cellular fibronectin plasma concentrations are predictors of the composite endpoint of length of stay and death in the intensive care unit after severe traumatic brain injury. Scand. J. Trauma Resusc. Emerg. Med. 2012;20:83.
    1. Crane P.K., Gibbons L.E., Dams-O'connor K., Trittschuh E., Leverenz J.B., Keene C.D., Sonnen J., Montine T.J., Bennett D.A., Leurgans S., Schneider J.A., Larson E.B. Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurol. 2016;73:1062–1069.
    1. Curtis A.M., Edelberg J., Jonas R., Rogers W.T., Moore J.S., Syed W., Mohler E.R., 3RD Endothelial microparticles: sophisticated vesicles modulating vascular function. Vasc. Med. 2013;18:204–214.
    1. Danaila L., Popescu I., Pais V., Riga D., Riga S., Pais E. Apoptosis, paraptosis, necrosis, and cell regeneration in posttraumatic cerebral arteries. Chirurgia (Bucur) 2013;108:319–324.
    1. De Leon M.J., Li Y., Okamura N., Tsui W.H., Saint-Louis L.A., Glodzik L., Osorio R.S., Fortea J., Butler T., Pirraglia E., Fossati S., Kim H.J., Carare R.O., Nedergaard M., Benveniste H., Rusinek H. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET. J. Nucl. Med. 2017;58:1471–1476.
    1. De Silva T.M., Faraci F.M. Microvascular dysfunction and cognitive impairment. Cell. Mol. Neurobiol. 2016;36:241–258.
    1. DeKosky S.T., Blennow K., Ikonomovic M.D., Gandy S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol. 2013;9:192–200.
    1. Devine J.M., Wong B., Gervino E., Pascual-Leone A., Alexander M.P. Independent, community-based aerobic exercise training for people with moderate-to-severe traumatic brain injury. Arch. Phys. Med. Rehabil. 2016;97:1392–1397.
    1. Faraci F.M. Disease highlights the cellular diversity of neurovascular units: sign in stranger. Circ. Res. 2017;121:203–205.
    1. Fossati S., Cam J., Meyerson J., Mezhericher E., Romero I.A., Couraud P.O., Weksler B.B., Ghiso J., Rostagno A. Differential activation of mitochondrial apoptotic pathways by vasculotropic amyloid-beta variants in cells composing the cerebral vessel walls. FASEB J. 2010;24:229–241.
    1. Fossati S., Ghiso J., Rostagno A. Insights into caspase-mediated apoptotic pathways induced by amyloid-beta in cerebral microvascular endothelial cells. Neurodegener. Dis. 2012;10:324–328.
    1. Fossati S., Ghiso J., Rostagno A. TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer's Abeta. Cell Death Dis. 2012;3
    1. Fossati S., Todd K., Sotolongo K., Ghiso J., Rostagno A. Differential contribution of isoaspartate post-translational modifications to the fibrillization and toxic properties of amyloid-beta and the asparagine 23 Iowa mutation. Biochem. J. 2013;456:347–360.
    1. Fossati S., Giannoni P., Solesio M.E., Cocklin S.L., Cabrera E., Ghiso J., Rostagno A. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiol. Dis. 2016;86:29–40.
    1. Fossati S., Ramos-Cejudo J., Debure L., Pirraglia E., Glodzik L., Osorio R.S., Chen J., Provost A., Jeromin A., Haas M., Marmar C., Deleon M. Differential value of plasma tau as a biomarker for Alzheimer's disease and chronic traumatic brain injury. Alzheimers Dement. 2017;13:1307.
    1. Gardner R.C., Burke J.F., Nettiksimmons J., Kaup A., Barnes D.E., Yaffe K. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol. 2014;71:1490–1497.
    1. Ghiso J., Fossati S., Rostagno A. Amyloidosis associated with cerebral amyloid angiopathy: cell signaling pathways elicited in cerebral endothelial cells. J. Alzheimers Dis. 2014;42(Suppl. 3):S167–76.
    1. Gill J., Merchant-Borna K., Jeromin A., Livingston W., Bazarian J. Acute plasma tau relates to prolonged return to play after concussion. Neurology. 2017;88:595–602.
    1. Glodzik L., Rusinek H., Pirraglia E., Mchugh P., Tsui W., Williams S., Cummings M., Li Y., Rich K., Randall C., Mosconi L., Osorio R., Murray J., Zetterberg H., Blennow K., De Leon M. Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly. Neurobiol. Aging. 2014;35:64–71.
    1. Glushakova O.Y., Johnson D., Hayes R.L. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J. Neurotrauma. 2014;31:1180–1193.
    1. Goldstein L.E., Fisher A.M., Tagge C.A., Zhang X.L., Velisek L., Sullivan J.A., Upreti C., Kracht J.M., Ericsson M., Wojnarowicz M.W., Goletiani C.J., Maglakelidze G.M., Casey N., Moncaster J.A., Minaeva O., Moir R.D., Nowinski C.J., Stern R.A., Cantu R.C., Geiling J., Blusztajn J.K., Wolozin B.L., Ikezu T., Stein T.D., Budson A.E., Kowall N.W., Chargin D., Sharon A., Saman S., Hall G.F., Moss W.C., Cleveland R.O., Tanzi R.E., Stanton P.K., Mckee A.C. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 2012;4:134ra60.
    1. Graves J.C., Kreipke C.W. Endothelin, cerebral blood flow, and traumatic brain injury: implications for a future therapeutic target. In: Kobeissy F.H., editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. CRC Press/Taylor & Francis.; Boca Raton (FL): 2015. Chapter 37. Frontiers in Neuroengineering.
    1. Gren M., Shahim P., Lautner R., Wilson D.H., Andreasson U., Norgren N., Blennow K., Zetterberg H. Blood biomarkers indicate mild neuroaxonal injury and increased amyloid beta production after transient hypoxia during breath-hold diving. Brain Inj. 2016;30:1226–1230.
    1. Gupta A., Iadecola C. Impaired Abeta clearance: a potential link between atherosclerosis and Alzheimer's disease. Front. Aging Neurosci. 2015;7:115.
    1. Hernandez-Guillamon M., Mawhirt S., Fossati S., Blais S., Pares M., Penalba A., Boada M., Couraud P.O., Neubert T.A., Montaner J., Ghiso J., Rostagno A. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells. J. Biol. Chem. 2010;285:27144–27158.
    1. Hernandez-Guillamon M., Martinez-Saez E., Delgado P., Domingues-Montanari S., Boada C., Penalba A., Boada M., Pagola J., Maisterra O., Rodriguez-Luna D., Molina C.A., Rovira A., Alvarez-Sabin J., Ortega-Aznar A., Montaner J. MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol. 2012;22:133–141.
    1. Herring A., Munster Y., Metzdorf J., Bolczek B., Krussel S., Krieter D., Yavuz I., Karim F., Roggendorf C., Stang A., Wang Y., Hermann D.M., Teuber-Hanselmann S., Keyvani K. Late running is not too late against Alzheimer's pathology. Neurobiol. Dis. 2016;94:44–54.
    1. Herweh C., Hess K., Meyding-Lamade U., Bartsch A.J., Stippich C., Jost J., Friedmann-Bette B., Heiland S., Bendszus M., Hahnel S. Reduced white matter integrity in amateur boxers. Neuroradiology. 2016;58:911–920.
    1. Hesse C., Rosengren L., Andreasen N., Davidsson P., Vanderstichele H., Vanmechelen E., Blennow K. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett. 2001;297:187–190.
    1. Huber B.R., Meabon J.S., Martin T.J., Mourad P.D., Bennett R., Kraemer B.C., Cernak I., Petrie E.C., Emery M.J., Swenson E.R., Mayer C., Mehic E., Peskind E.R., Cook D.G. Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J. Alzheimers Dis. 2013;37:309–323.
    1. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–866.
    1. Iadecola C. Untangling neurons with endothelial nitric oxide. Circ. Res. 2016;119:1052–1054.
    1. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17–42.
    1. James M.L., Wang H., Venkatraman T., Song P., Lascola C.D., Laskowitz D.T. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice. J. Neurotrauma. 2010;27:217–228.
    1. Johnson V.E., Stewart W., Smith D.H. Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer's disease? Nat. Rev. Neurosci. 2010;11:361–370.
    1. Johnson V.E., Stewart W., Smith D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013;246:35–43.
    1. Jullienne A., Roberts J.M., Pop V., Paul Murphy M., Head E., Bix G.J., Badaut J. Juvenile traumatic brain injury induces long-term perivascular matrix changes alongside amyloid-beta accumulation. J. Cereb. Blood Flow Metab. 2014;34:1637–1645.
    1. Katai E., Pal J., Poor V.S., Purewal R., Miseta A., Nagy T. Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells. J. Cell. Mol. Med. 2016;20:2269–2277.
    1. Kawata K., Liu C.Y., Merkel S.F., Ramirez S.H., Tierney R.T., Langford D. Blood biomarkers for brain injury: what are we measuring? Neurosci. Biobehav. Rev. 2016;68:460–473.
    1. Kenney K., Amyot F., Haber M., Pronger A., Bogoslovsky T., Moore C., Diaz-Arrastia R. Cerebral vascular injury in traumatic brain injury. Exp. Neurol. 2016;275(Pt 3):353–366.
    1. Kinnunen K.M., Greenwood R., Powell J.H., Leech R., Hawkins P.C., Bonnelle V., Patel M.C., Counsell S.J., Sharp D.J. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134:449–463.
    1. Kniewallner K.M., Wenzel D., Humpel C. Thiazine Red(+) platelet inclusions in Cerebral Blood Vessels are first signs in an Alzheimer's Disease mouse model. Sci. Rep. 2016;6:28447.
    1. Leeds P.R., Yu F., Wang Z., Chiu C.T., Zhang Y., Leng Y., Linares G.R., Chuang D.M. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem. Neurosci. 2014;5:422–433.
    1. Liu C.L., Chen C.C., Lee H.C., Cho D.Y. Matrix metalloproteinase-9 in the ventricular cerebrospinal fluid correlated with the prognosis of traumatic brain injury. Turk. Neurosurg. 2014;24:363–368.
    1. Lok J., Leung W., Murphy S., Butler W., Noviski N., Lo, E. H. Intracranial hemorrhage: mechanisms of secondary brain injury. Acta Neurochir. Suppl. 2011;111:63–69.
    1. Lundgaard I., Lu M.L., Yang E., Peng W., Mestre H., Hitomi E., Deane R., Nedergaard M. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab. 2017;37:2112–2124.
    1. Maeda T., Lee S.M., Hovda D.A. Restoration of cerebral vasoreactivity by an L-type calcium channel blocker following fluid percussion brain injury. J. Neurotrauma. 2005;22:763–771.
    1. Martland H.S. Punch drunk. JAMA. 1928;91:1103–1107.
    1. McKee A.C., Stern R.A., Nowinski C.J., Stein T.D., Alvarez V.E., Daneshvar D.H., Lee H.S., Wojtowicz S.M., Hall G., Baugh C.M., Riley D.O., Kubilus C.A., Cormier K.A., Jacobs M.A., Martin B.R., Abraham C.R., Ikezu T., Reichard R.R., Wolozin B.L., Budson A.E., Goldstein L.E., Kowall N.W., Cantu R.C. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64.
    1. McKee A.C., Stein T.D., Kiernan P.T., Alvarez V.E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 2015;25:350–364.
    1. McKee A.C., Cairns N.J., Dickson D.W., Folkerth R.D., Keene C.D., Litvan I., Perl D.P., Stein T.D., Vonsattel J.P., Stewart W., Tripodis Y., Crary J.F., Bieniek K.F., Dams-O'Connor K., Alvarez V.E., Gordon W.A., Group, TC The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 2016;131:75–86.
    1. Mendez M.F. What is the relationship of traumatic brain injury to dementia? J. Alzheimers Dis. 2017;57:667–681.
    1. Merlini M., Wanner D., Nitsch R.M. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016;131:737–752.
    1. Michalicova A., Banks W.A., Legath J., Kovac A. Tauopathies-focus on changes at the neurovascular unit. Curr. Alzheimer Res. 2017;14:790–801.
    1. Mrozek S., Vardon F., Geeraerts T. Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol. Res. Pract. 2012;2012:989487.
    1. Nekludov M., Mobarrez F., Gryth D., Bellander B.M., Wallen H. Formation of microparticles in the injured brain of patients with severe isolated traumatic brain injury. J. Neurotrauma. 2014;31:1927–1933.
    1. Olivera A., Lejbman N., Jeromin A., French L.M., Kim H.S., Cashion A., Mysliwiec V., Diaz-Arrastia R., Gill J. Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurol. 2015;72:1109–1116.
    1. Omalu B.I., Dekosky S.T., Minster R.L., Kamboh M.I., Hamilton R.L., Wecht C.H. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery. 2005;57:128–134. (discussion 128-34)
    1. Ost M., Nylen K., Csajbok L., Ohrfelt A.O., Tullberg M., Wikkelso C., Nellgard P., Rosengren L., Blennow K., Nellgard B. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67:1600–1604.
    1. Park L., Uekawa K., Garcia-Bonilla L., Koizumi K., Murphy M., Pistik R., Younkin L., Younkin S., Zhou P., Carlson G., Anrather J., Iadecola C. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Abeta peptides. Circ. Res. 2017;121:258–269.
    1. Perez M., Hernandez F., Lim F., Diaz-Nido J., Avila J. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J. Alzheimers Dis. 2003;5:301–308.
    1. Perry D.C., Sturm V.E., Peterson M.J., Pieper C.F., Bullock T., Boeve B.F., Miller B.L., Guskiewicz K.M., Berger M.S., Kramer J.H., Welsh-Bohmer K.A. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J. Neurosurg. 2016;124:511–526.
    1. Plog B.A., Dashnaw M.L., Hitomi E., Peng W., Liao Y., Lou N., Deane R., Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 2015;35:518–526.
    1. Pluta R., Furmaga-Jablonska W., Maciejewski R., Ulamek-Koziol M., Jablonski M. Brain ischemia activates beta- and gamma-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer's disease. Mol. Neurobiol. 2013;47:425–434.
    1. Purkayastha S., Fadar O., Mehregan A., Salat D.H., Moscufo N., Meier D.S., Guttmann C.R., Fisher N.D., Lipsitz L.A., Sorond F.A. Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J. Cereb. Blood Flow Metab. 2014;34:228–234.
    1. Ramlackhansingh A.F., Brooks D.J., Greenwood R.J., Bose S.K., Turkheimer F.E., Kinnunen K.M., Gentleman S., Heckemann R.A., Gunanayagam K., Gelosa G., Sharp D.J. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 2011;70:374–383.
    1. Ramos-Cejudo J., Gutierrez-Fernandez M., Rodriguez-Frutos B., Exposito Alcaide M., Sanchez-Cabo F., Dopazo A., Diez-Tejedor E. Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: a microarray analysis. PLoS One. 2012;7
    1. Rubenstein R., Chang B., Yue J.K., Chiu A., Winkler E.A., Puccio A.M., Diaz-Arrastia R., Yuh E.L., Mukherjee P., Valadka A.B., Gordon W.A., Okonkwo D.O., Davies P., Agarwal S., Lin F., Sarkis G., Yadikar H., Yang Z., Manley G.T., Wang K.K.W., The T.-T.B.I.I., Cooper S.R., Dams-O'connor K., Borrasso A.J., Inoue T., Maas A.I.R., Menon D.K., Schnyer D.M., Vassar M.J. Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 2017;74:1063–1072.
    1. Sagare A.P., Bell R.D., Zhao Z., Ma Q., Winkler E.A., Ramanathan A., Zlokovic B.V. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 2013;4:2932.
    1. Salehi A., Zhang J.H., Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J. Cereb. Blood Flow Metab. 2017;37:2320–2339.
    1. Shahim P., Tegner Y., Wilson D.H., Randall J., Skillback T., Pazooki D., Kallberg B., Blennow K., Zetterberg H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71:684–692.
    1. Shahim P., Tegner Y., Gustafsson B., Gren M., Arlig J., Olsson M., Lehto N., Engstrom A., Hoglund K., Portelius E., Zetterberg H., Blennow K. Neurochemical aftermath of repetitive mild traumatic brain injury. JAMA Neurol. 2016;73:1308–1315.
    1. Shahim P., Zetterberg H., Tegner Y., Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017;88:1788–1794.
    1. Silva D.F., Selfridge J.E., Lu J., E. L., Roy N., Hutfles L., Burns J.M., Michaelis E.K., Yan S., Cardoso S.M., Swerdlow R.H. Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Hum. Mol. Genet. 2013;22:3931–3946.
    1. Smith D.H., Johnson V.E., Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat. Rev. Neurol. 2013;9:211–221.
    1. Spiegel J., Pirraglia E., Osorio R.S., Glodzik L., Li Y., Tsui W., Saint Louis L.A., Randall C., Butler T., Xu J., Zinkowski R.P., Zetterberg H., Fortea J., Fossati S., Wisniewski T., Davies P., Blennow K., De Leon M.J. Greater specificity for cerebrospinal fluid P-tau231 over P-tau181 in the differentiation of healthy controls from Alzheimer's disease. J. Alzheimers Dis. 2016;49:93–100.
    1. Swerdlow R.H. Mitochondria and mitochondrial cascades in Alzheimer's disease. J. Alzheimers Dis. 2017 Oct 7 [Epub ahead of print]
    1. Szarka N., Pabbidi M.R., Amrein K., Czeiter E., Berta G., Pohoczky K., Helyes Z., Ungvari Z., Koller A., Buki A., Toth P. Traumatic brain injury impairs myogenic constriction of cerebral arteries: role of mitochondria-derived H2O2 and TRPV4-dependent activation of BKCa channels. J. Neurotrauma. 2018 Jan 12 [Epub ahead of print]
    1. Tarasoff-Conway J.M., Carare R.O., Osorio R.S., Glodzik L., Butler T., Fieremans E., Axel L., Rusinek H., Nicholson C., Zlokovic B.V., Frangione B., Blennow K., Menard J., Zetterberg H., Wisniewski T., DE Leon M.J. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 2015;11:457–470.
    1. Tenreiro M.M., Ferreira R., Bernardino L., Brito M.A. Cellular response of the blood-brain barrier to injury: potential biomarkers and therapeutic targets for brain regeneration. Neurobiol. Dis. 2016;91:262–273.
    1. Tian Y., Salsbery B., Wang M., Yuan H., Yang J., Zhao Z., Wu X., Zhang Y., Konkle B.A., Thiagarajan P., Li M., Zhang J., Dong J.F. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury. Blood. 2015;125:2151–2159.
    1. Vermaelen J., Greiffenstein P., Deboisblanc B.P. Sleep in traumatic brain injury. Crit. Care Clin. 2015;31:551–561.
    1. Von Holstein-Rathlou S., Petersen N.C., Nedergaard M. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neurosci. Lett. 2018;662:253–258.
    1. Washington P.M., Morffy N., Parsadanian M., Zapple D.N., Burns M.P. Experimental traumatic brain injury induces rapid aggregation and oligomerization of amyloid-beta in an Alzheimer's disease mouse model. J. Neurotrauma. 2014;31:125–134.
    1. Washington P.M., Villapol S., Burns M.P. Polypathology and dementia after brain trauma: does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp. Neurol. 2016;275(Pt 3):381–388.
    1. Weiner M.W., Crane P.K., Montine T.J., Bennett D.A., Veitch D.P. Traumatic brain injury may not increase the risk of Alzheimer disease. Neurology. 2017;89:1923–1925.
    1. Weinstein A.A., Chin L.M., Collins J., Goel D., Keyser R.E., Chan L. Effect of aerobic exercise training on mood in people with traumatic brain injury: a pilot study. J. Head Trauma Rehabil. 2017;32:E49–E56.
    1. Wen J., Qian S., Yang Q., Deng L., Mo, Y. & Yu, Y. Overexpression of netrin-1 increases the expression of tight junction-associated proteins, claudin-5, occludin, and ZO-1, following traumatic brain injury in rats. Exp. Ther. Med. 2014;8:881–886.
    1. Wisniewski T., Goni F. Immunotherapeutic approaches for Alzheimer's disease. Neuron. 2015;85:1162–1176.
    1. Wisniewski H.M., Maslinska D. Beta-protein immunoreactivity in the human brain after cardiac arrest. Folia Neuropathol. 1996;34:65–71.
    1. Wolters F.J., Zonneveld H.I., Hofman A., VAN DER Lugt A., Koudstaal P.J., Vernooij M.W., Ikram M.A., Heart-Brain Connection Collaborative Research, G Cerebral perfusion and the risk of dementia: a population-based study. Circulation. 2017;136:719–728.
    1. Xing C., Hayakawa K., Lok J., Arai K., Lo E.H. Injury and repair in the neurovascular unit. Neurol. Res. 2012;34:325–330.
    1. Xu C.S., Liu A.C., Chen J., Pan Z.Y., Wan Q., Li Z.Q., Wang Z.F. Overactivation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiates accumulation of hyperphosphorylated tau in rat hippocampus after transient middle cerebral artery occlusion. J. Neurochem. 2015;134:566–577.
    1. Zehendner C.M., Sebastiani A., Hugonnet A., Bischoff F., Luhmann H.J., Thal S.C. Traumatic brain injury results in rapid pericyte loss followed by reactive pericytosis in the cerebral cortex. Sci. Rep. 2015;5:13497.
    1. Zetterberg H., Blennow K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat. Rev. Neurol. 2016;12:563–574.
    1. Zhao G., Liu H.L., Zhang H., Tong X.J. Treadmill exercise enhances synaptic plasticity, but does not alter beta-amyloid deposition in hippocampi of aged APP/PS1 transgenic mice. Neuroscience. 2015;298:357–366.

Source: PubMed

3
Prenumerera