A New CT Method for Assessing 3D Movements in Lumbar Facet Joints and Vertebrae in Patients before and after TDR

Per Svedmark, Svante Berg, Marilyn E Noz, Gerald Q Maguire Jr, Michael P Zeleznik, Lars Weidenhielm, Gunnar Nemeth, Henrik Olivecrona, Per Svedmark, Svante Berg, Marilyn E Noz, Gerald Q Maguire Jr, Michael P Zeleznik, Lars Weidenhielm, Gunnar Nemeth, Henrik Olivecrona

Abstract

This study describes a 3D-CT method for analyzing facet joint motion and vertebral rotation in the lumbar spine after TDR. Ten patients were examined before and then three years after surgery, each time with two CT scans: provoked flexion and provoked extension. After 3D registration, the facet joint 3D translation and segmental vertebral 3D rotation were analyzed at the operated level (L5-S1) and adjacent level (L4-L5). Pain was evaluated using VAS. The median (±SD) 3D movement in the operated level for the left facet joint was 3.2 mm (±1.9 mm) before and 3.5 mm (±1.7 mm) after surgery and for the right facet joint was 3.0 mm (±1.0 mm) before and 3.6 mm (±1.4 mm) after surgery. The median vertebral rotation in the sagittal plane at the operated level was 5.4° (±2.3°) before surgery and 6.8° (±1.7°) after surgery and in the adjacent level was 7.7° (±4.0°) before and 9.2° (±2.7°) after surgery. The median VAS was reduced from 6 (range 5-8) to 3 (range 2-8) in extension and from 4 (range 2-6) to 2 (range 1-3) in flexion.

Figures

Figure 1
Figure 1
A person lying on the jig in extension provocation (a) and in flexion provocation (b).
Figure 2
Figure 2
Example in 2D of choosing landmarks on L5 ((a) axial view, (b) coronal view, and (c) sagittal view).
Figure 3
Figure 3
2D overlay projection of the L5 vertebra in axial plane. The red part is the transformed vertebra superimposed on the reference vertebrae. One can see that it is an almost perfect match.
Figure 4
Figure 4
Patient 1: 2D projections where the prosthesis is visualized as towards the right of the midline. In the left axial view, the keel of the prosthesis is partly visualized. In the right coronal view it is shown that the prosthesis was placed slightly to the right of the midline.
Figure 5
Figure 5
3D isosurface illustrating the subsidence of the prosthesis (green) into the endplate of the L5 vertebra on Patient 8.
Figure 6
Figure 6
3D isosurface for Patient 4 viewed from behind the L5-S1 vertebrae. In the left joint of L5-S1 (red circle) the osteoarthritis is severe with visually displayed osteophytes in this view. Below the joint there are artefacts from the prosthesis in L5-S1 level.

References

    1. Swedish Council on Technology Assessment in Health Care (SBU) Report from the Swedish Council on Technology Assessment in Health Care (SBU). Back pain—causes, diagnosis, treatment. International Journal of Technology Assessment in Health Care. 1991;7(4):644–646.
    1. Reports from the Swedish Council on Technology Assessment in Health Care. Back pain. International Journal of Technology Assessment in Health. 2000;16(3):929–943.
    1. Ekman M., Jönhagen S., Hunsche E., Jönsson L. Burden of illness of chronic low back pain in Sweden: a cross-sectional, retrospective study in primary care setting. Spine. 2005;30(15):1777–1785. doi: 10.1097/01.brs.0000171911.99348.90.
    1. Benoist M. Natural history of the aging spine. European Spine Journal. 2003;12(2):S86–S89. doi: 10.1007/s00586-003-0593-0.
    1. Lotz J. C., Ulrich J. A. Innervation, inflammation, and hypermobility may characterize pathologic disc degeneration: review of animal model data. The Journal of Bone & Joint Surgery—American Volume. 2006;88(supplement 2):76–82. doi: 10.2106/jbjs.e.01448.
    1. Zhao F., Pollintine P., Hole B. D., Dolan P., Adams M. A. Discogenic origins of spinal instability. Spine. 2005;30(23):2621–2630. doi: 10.1097/01.brs.0000188203.71182.c0.
    1. Aoki Y., Ohtori S., Ino H., et al. Disc inflammation potentially promotes axonal regeneration of dorsal root ganglion neurons innervating lumbar intervertebral disc in rats. Spine. 2004;29(23):2621–2626. doi: 10.1097/01.brs.0000146051.11574.b4.
    1. Gillet P. The fate of the adjacent motion segments after lumbar fusion. Journal of Spinal Disorders & Techniques. 2003;16(4):338–345. doi: 10.1097/00024720-200308000-00005.
    1. Ghiselli G., Wang J. C., Bhatia N. N., Hsu W. K., Dawson E. G. Adjacent segment degeneration in the lumbar spine. The Journal of Bone and Joint Surgery—American Volume. 2004;86(7):1497–1503.
    1. Berg S., Tullberg T., Branth B., Olerud C., Tropp H. Total disc replacement compared to lumbar fusion: a randomised controlled trial with 2-year follow-up. European Spine Journal. 2009;18(10):1512–1519. doi: 10.1007/s00586-009-1047-0.
    1. Sköld C., Tropp H., Berg S. Five-year follow-up of total disc replacement compared to fusion: a randomized controlled trial. European Spine Journal. 2013;22(10):2288–2295. doi: 10.1007/s00586-013-2926-y.
    1. Leivseth G., Brinckmann P., Frobin W., Johnsson R., Strömqvist B. Assessment of sagittal plane segmental motion in the lumbar spine. A comparison between distortion-compensated and stereophotogrammetric roentgen analysis. Spine. 1998;23(23):2648–2655. doi: 10.1097/00007632-199812010-00021.
    1. Dvorák J., Panjabi M. M., Chang D. G., Theiler R., Grob D. Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending. Spine. 1991;16(5):562–571. doi: 10.1097/00007632-199105000-00014.
    1. Lim M. R., Loder R. T., Huang R. C., et al. Measurement error of lumbar total disc replacement range of motion. Spine. 2006;31(10):E291–E297. doi: 10.1097/01.brs.0000216452.54421.ea.
    1. Panjabi M. M., Chang D., Dvorak J. An analysis of errors in kinematic parameters associated with in vivo functional radiographs. Spine. 1992;17(2):200–205. doi: 10.1097/00007632-199202000-00014.
    1. Shaffer W. O., Spratt K. F., Weinstein J., Lehmann T. R., Goel V. 1990 Volvo award in clinical sciences. The consistency and accuracy of roentgenograms for measuring sagittal translation in the lumbar vertebral motion segment. An experimental model. Spine. 1990;15(8):741–750.
    1. Zhao K., Yang C., Zhao C., An K.-N. Assessment of non-invasive intervertebral motion measurements in the lumbar spine. Journal of Biomechanics. 2005;38(9):1943–1946. doi: 10.1016/j.jbiomech.2004.07.029.
    1. Leivseth G., Braaten S., Frobin W., Brinckmann P. Mobility of lumbar segments instrumented with a ProDisc II prosthesis: a two-year follow-up study. Spine. 2006;31(15):1726–1733. doi: 10.1097/01.brs.0000224213.45330.68.
    1. Leivseth G., Kolstad F., Nygaard Ø. P., Zoega B., Frobin W., Brinckmann P. Comparing precision of distortion-compensated and stereophotogrammetric Roentgen analysis when monitoring fusion in the cervical spine. European Spine Journal. 2006;15(6):774–779. doi: 10.1007/s00586-005-0929-z.
    1. Axelsson P., Johnsson R., Strömqvist B. Radiostereometry in lumbar spine research. Acta Orthopaedica. Supplementum. 2006;77(323):3–42. doi: 10.1080/17453690610046495.
    1. Pearcy M., Portek I., Shepherd J. Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine. 1984;9(3):294–297. doi: 10.1097/00007632-198404000-00013.
    1. Olivecrona H., Noz M. E., Maguire G. Q., Jr., Zeleznik M. P., Sollerman C., Olivecrona L. A new computed tomography-based radiographic method to detect early loosening of total wrist implants. Acta Radiologica. 2007;48(9):997–1003. doi: 10.1080/02841850701499417.
    1. Olivecrona H., Weidenhielm L., Olivecrona L., et al. A new CT method for measuring cup orientation after total hip arthroplasty: a study of 10 patients. Acta Orthopaedica Scandinavica. 2004;75(3):252–260. doi: 10.1080/00016470410001169.
    1. Jedenmalm A., Nilsson F., Noz M. E., et al. Validation of a 3D CT method for measurement of linear wear of acetabular cups: a hip simulator study. Acta Orthopaedica. 2011;82(1):35–41. doi: 10.3109/17453674.2011.552777.
    1. Svedmark P., Weidenhielm L., Nemeth G., et al. Model studies on segmental movement in lumbar spine using a semi-automated program for volume fusion. Computer Aided Surgery. 2008;13(1):14–22. doi: 10.1080/10929080701882549.
    1. Svedmark P., Lundh F., Németh G., et al. Motion analysis of total cervical disc replacements using computed tomography: preliminary experience with nine patients and a model. Acta Radiologica. 2011;52(10):1128–1137. doi: 10.1258/ar.2011.110230.
    1. Svedmark P., Tullberg T., Noz M. E., et al. Three-dimensional movements of the lumbar spine facet joints and segmental movements: in vivo examinations of normal subjects with a new non-invasive method. European Spine Journal. 2012;21(4):599–605. doi: 10.1007/s00586-011-1988-y.
    1. Skeppholm M., Svedmark P., Noz M. E., Maguire G. Q., Olivecrona H., Olerud C. Evaluation of mobility and stability in the discover artificial disc: an in vivo motion study using high-accuracy 3D CT data. Journal of Neurosurgery: Spine. 2015;23(3):383–389. doi: 10.3171/2014.12.spine14813.
    1. McCormack H. M., Horne D. J., Sheather S. Clinical applications of visual analogue scales: a critical review. Psychological Medicine. 1988;18(4):1007–1019. doi: 10.1017/s0033291700009934.
    1. Olivecrona L., Crafoord J., Olivecrona H., et al. Acetabular component migration in total hip arthroplasty using CT and a semiautomated program for volume merging. Acta Radiologica. 2002;43(5):517–527. doi: 10.1258/rsmacta.43.5.517.
    1. Gorniak R. J. T., Kramer E. L., Maguire G. Q., Jr., Noz M. E., Schettino C. J., Zeleznik M. P. Evaluation of a semiautomatic 3D fusion technique applied to molecular imaging and MRI brain/frame volume data sets. Journal of Medical Systems. 2003;27(2):141–156. doi: 10.1023/a:1021860910856.
    1. Noz M. E., Maguire G. Q., Jr., Zeleznik M. P., Kramer E. L., Mahmoud F., Crafoord J. A versatile functional-anatomic image fusion method for volume data sets. Journal of Medical Systems. 2001;25(5):297–307. doi: 10.1023/A:1010633123512.
    1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
    1. Berg S., Tropp H. T., Leivseth G. Disc height and motion patterns in the lumbar spine in patients operated with total disc replacement or fusion for discogenic back pain. Results from a randomized controlled trial. The Spine Journal. 2011;11(11):991–998. doi: 10.1016/j.spinee.2011.08.434.
    1. Siepe C. J., Hitzl W., Meschede P., Sharma A. K., Khattab M. F., Mayer M. H. Interdependence between disc space height, range of motion and clinical outcome in total lumbar disc replacement. Spine. 2009;34(9):904–916. doi: 10.1097/BRS.0b013e31819966b0.
    1. Wall B. F., Hart D. Revised radiation doses for typical X-ray examinations. Report on a recent review of doses to patients from medical X-ray examinations in the UK by NRPB. National Radiological Protection Board. The British Journal of Radiology. 1997;70(833):437–439. doi: 10.1259/bjr.70.833.9227222.
    1. Mettler F. A., Jr., Huda W., Yoshizumi T. T., Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–263. doi: 10.1148/radiol.2481071451.
    1. Huang R. C., Tropiano P., Marnay T., Girardi F. P., Lim M. R., Cammisa F. P., Jr. Range of motion and adjacent level degeneration after lumbar total disc replacement. The Spine Journal. 2006;6(3):242–247. doi: 10.1016/j.spinee.2005.04.013.
    1. Cinotti G., David T., Postacchini F. Results of disc prosthesis after a minimum follow-up period of 2 years. Spine. 1996;21(8):995–1000. doi: 10.1097/00007632-199604150-00015.
    1. Rainey S., Blumenthal S. L., Zigler J. E., Guyer R. D., Ohnmeiss D. D. Analysis of adjacent segment reoperation after lumbar total disc replacement. International Journal of Spine Surgery. 2012;6(1):140–144. doi: 10.1016/j.ijsp.2012.02.007.
    1. Punt I. M., Visser V. M., Van Rhijn L. W., et al. Complications and reoperations of the SB Charité lumbar disc prosthesis: experience in 75 patients. European Spine Journal. 2008;17(1):36–43. doi: 10.1007/s00586-007-0506-8.
    1. Putzier M., Funk J. F., Schneider S. V., et al. Charité total disc replacement—clinical and radiographical results after an average follow-up of 17 years. European Spine Journal. 2006;15(2):183–195. doi: 10.1007/s00586-005-1022-3.
    1. Boss O. L., Tomasi S. O., Bäurle B., Sgier F., Hausmann O. N. Lumbar total disc replacement: correlation of clinical outcome and radiological parameters. Acta Neurochirurgica. 2013;155(10):1923–1930. doi: 10.1007/s00701-013-1774-1.
    1. Michaela G., Denise H., Liebensteiner M., Michael B. C. Footprint mismatch in lumbar total disc arthroplasty. European Spine Journal. 2008;17(11):1470–1475. doi: 10.1007/s00586-008-0837-0.

Source: PubMed

3
Prenumerera