An open-label randomized controlled trial of the effect of lopinavir/ritonavir, lopinavir/ritonavir plus IFN-β-1a and hydroxychloroquine in hospitalized patients with COVID-19

Florence Ader, Nathan Peiffer-Smadja, Julien Poissy, Maude Bouscambert-Duchamp, Drifa Belhadi, Alpha Diallo, Christelle Delmas, Juliette Saillard, Aline Dechanet, Noémie Mercier, Axelle Dupont, Toni Alfaiate, François-Xavier Lescure, François Raffi, François Goehringer, Antoine Kimmoun, Stéphane Jaureguiberry, Jean Reignier, Saad Nseir, François Danion, Raphael Clere-Jehl, Kévin Bouiller, Jean-Christophe Navellou, Violaine Tolsma, André Cabié, Clément Dubost, Johan Courjon, Sylvie Leroy, Joy Mootien, Rostane Gaci, Bruno Mourvillier, Emmanuel Faure, Valérie Pourcher, Sébastien Gallien, Odile Launay, Karine Lacombe, Jean-Philippe Lanoix, Alain Makinson, Guillaume Martin-Blondel, Lila Bouadma, Elisabeth Botelho-Nevers, Amandine Gagneux-Brunon, Olivier Epaulard, Lionel Piroth, Florent Wallet, Jean-Christophe Richard, Jean Reuter, Thérèse Staub, Bruno Lina, Marion Noret, Claire Andrejak, Minh Patrick Lê, Gilles Peytavin, Maya Hites, Dominique Costagliola, Yazdan Yazdanpanah, Charles Burdet, France Mentré, DisCoVeRy study group, Florence Ader, Nathan Peiffer-Smadja, Julien Poissy, Maude Bouscambert-Duchamp, Drifa Belhadi, Alpha Diallo, Christelle Delmas, Juliette Saillard, Aline Dechanet, Noémie Mercier, Axelle Dupont, Toni Alfaiate, François-Xavier Lescure, François Raffi, François Goehringer, Antoine Kimmoun, Stéphane Jaureguiberry, Jean Reignier, Saad Nseir, François Danion, Raphael Clere-Jehl, Kévin Bouiller, Jean-Christophe Navellou, Violaine Tolsma, André Cabié, Clément Dubost, Johan Courjon, Sylvie Leroy, Joy Mootien, Rostane Gaci, Bruno Mourvillier, Emmanuel Faure, Valérie Pourcher, Sébastien Gallien, Odile Launay, Karine Lacombe, Jean-Philippe Lanoix, Alain Makinson, Guillaume Martin-Blondel, Lila Bouadma, Elisabeth Botelho-Nevers, Amandine Gagneux-Brunon, Olivier Epaulard, Lionel Piroth, Florent Wallet, Jean-Christophe Richard, Jean Reuter, Thérèse Staub, Bruno Lina, Marion Noret, Claire Andrejak, Minh Patrick Lê, Gilles Peytavin, Maya Hites, Dominique Costagliola, Yazdan Yazdanpanah, Charles Burdet, France Mentré, DisCoVeRy study group

Abstract

Objectives: We evaluated the clinical, virological and safety outcomes of lopinavir/ritonavir, lopinavir/ritonavir-interferon (IFN)-β-1a, hydroxychloroquine or remdesivir in comparison to standard of care (control) in coronavirus 2019 disease (COVID-19) inpatients requiring oxygen and/or ventilatory support.

Methods: We conducted a phase III multicentre, open-label, randomized 1:1:1:1:1, adaptive, controlled trial (DisCoVeRy), an add-on to the Solidarity trial (NCT04315948, EudraCT2020-000936-23). The primary outcome was the clinical status at day 15, measured by the WHO seven-point ordinal scale. Secondary outcomes included quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory specimens and pharmacokinetic and safety analyses. We report the results for the lopinavir/ritonavir-containing arms and for the hydroxychloroquine arm, trials of which were stopped prematurely.

Results: The intention-to-treat population included 583 participants-lopinavir/ritonavir (n = 145), lopinavir/ritonavir-IFN-β-1a (n = 145), hydroxychloroquine (n = 145), control (n = 148)-among whom 418 (71.7%) were male, the median age was 63 years (IQR 54-71), and 211 (36.2%) had a severe disease. The day-15 clinical status was not improved with the investigational treatments: lopinavir/ritonavir versus control, adjusted odds ratio (aOR) 0.83, (95% confidence interval (CI) 0.55-1.26, p 0.39), lopinavir/ritonavir-IFN-β-1a versus control, aOR 0.69 (95%CI 0.45-1.04, p 0.08), and hydroxychloroquine versus control, aOR 0.93 (95%CI 0.62-1.41, p 0.75). No significant effect of investigational treatment was observed on SARS-CoV-2 clearance. Trough plasma concentrations of lopinavir and ritonavir were higher than those expected, while those of hydroxychloroquine were those expected with the dosing regimen. The occurrence of serious adverse events was significantly higher in participants allocated to the lopinavir/ritonavir-containing arms.

Conclusion: In adults hospitalized for COVID-19, lopinavir/ritonavir, lopinavir/ritonavir-IFN-β-1a and hydroxychloroquine improved neither the clinical status at day 15 nor SARS-CoV-2 clearance in respiratory tract specimens.

Keywords: COVID-19; Hydroxychloroquine; Interferon β-1a; Lopinavir/ritonavir; Randomized controlled trial; SARS-CoV-2.

Copyright © 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Clinical status, as measured by the seven-point ordinal scale, at day 15 and day 29 of patients from the intention-to-treat population of the DisCoVeRy trial, according to treatment arm and disease severity at baseline. Reported numbers refer to the proportion of patients with the corresponding level in each group. L/r, lopinavir/ritonavir; L/r + IFN, lopinavir/ritonavir + interferon β-1a; HCQ, hydroxychloroquine.
Fig. 2
Fig. 2
Evolution of the normalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in nasopharyngeal swabs between baseline and day 15 in the intention-to-treat population of the DisCoVeRy trial. Means (95%CI) of the log viral loads (panel A), mean changes from baseline (95%CI) of the log viral loads (panel B). L/r, lopinavir/ritonavir (blue line); L/r + IFN, lopinavir/ritonavir + interferon β-1a (yellow line); HCQ, hydroxychloroquine (red line); control (black line). LSMD, least-square mean difference; 95%CI, 95% confidence interval.

References

    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A novel coronavirus from patients with pneumonia in China, 2019. New Engl J Med. 2020;382:727–733.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
    1. Chu C.M., Cheng V.C., Hung I.F., Wong M.M., Chan K.H., Chan K.S., et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252–256.
    1. de Wilde A.H., Jochmans D., Posthuma C.C., Zevenhoven-Dobbe J.C., van Nieuwkoop S., Bestebroer T.M., et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58:4875–4884.
    1. Sallard E., Lescure F.X., Yazdanpanah Y., Mentre F., Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antivir Res. 2020;178:104791.
    1. Lokugamage K.G., Hage A., de Vries M., Valero-Jimenez A.M., Schindewolf C., Dittmann M., et al. SARS-CoV-2 is sensitive to type I interferon pretreatment. BioRxiv. 2020 doi: 10.1101/2020.03.07.982264.
    1. Clementi N., Ferrarese R., Criscuolo E., Diotti R.A., Castelli M., Scagnolari C., et al. Interferon-beta-1a inhibition of severe acute respiratory syndrome-coronavirus 2 in vitro when administered after virus infection. J Infect Dis. 2020;222:722–725.
    1. Liu J., Cao R., Xu M., Wang X., Zhang H., Hu H., et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6:16.
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;382:1787–1799.
    1. Yao X., Ye F., Zhang M., Cui C., Huang B., Niu P., et al. In vitro antiviral activity and Projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Clin Infect Dis. 2020;71:732–739.
    1. Warren T.K., Jordan R., Lo M.K., Ray A.S., Mackman R.L., Soloveva V., et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–385.
    1. Ader F., Discovery French Trial Management T. Protocol for the DisCoVeRy trial: multicentre, adaptive, randomised trial of the safety and efficacy of treatments for COVID-19 in hospitalised adults. BMJ Open. 2020;10
    1. WHO Solidarity Trial Consortium Repurposed antiviral drugs for Covid-19—interim WHO Solidarity trial results. N Engl J Med. 2021;384:497–511.
    1. Arabi Y.M., Alothman A., Balkhy H.H., Al-Dawood A., AlJohani S., Al Harbi S., et al. Treatment of Middle East Respiratory Syndrome with a combination of lopinavir–ritonavir and interferon-beta1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials. 2018;19:81.
    1. Le M.P., Peiffer-Smadja N., Guedj J., Neant N., Mentre F., Ader F., et al. Rationale of a loading dose initiation for hydroxychloroquine treatment in COVID-19 infection in the DisCoVeRy trial. J Antimicrob Chemother. 2020;75:2376–2380.
    1. Etievant S., Bal A., Escuret V., Brengel-Pesce K., Bouscambert M., Cheynet V., et al. Performance assessment of SARS-CoV-2 PCR assays developed by WHO referral laboratories. J Clin Med. 2020;9:1871.
    1. Jung B.H., Rezk N.L., Bridges A.S., Corbett A.H., Kashuba A.D.M. Simultaneous determination of 17 antiretroviral drugs in human plasma for quantitative analysis with liquid chromatography–tandem mass spectrometry. Biomed Chromatogr. 2007;21:1095–1104.
    1. Chhonker Y.S., Sleightholm R.L., Li J., Oupický D., Murry D.J. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC–ESI–MS/MS: an application for pharmacokinetic studies. J Chromatog B. 2018;1072:320–327.
    1. RECOVERY Collaborative Group Lopinavir–ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396:1345–1352.
    1. Marzolini C., Stader F., Stoeckle M., Franzeck F., Egli A., Bassetti S., et al. Effect of systemic inflammatory response to SARS-CoV-2 on lopinavir and hydroxychloroquine plasma concentrations. Antimicrob Agents Chemother. 2020;64:e01177–e01220.
    1. Ofotokun I., Lennox J.L., Eaton M.E., Ritchie J.C., Easley K.A., Masalovich S.E., et al. Immune activation mediated change in alpha-1-acid glycoprotein: impact on total and free lopinavir plasma exposure. J Clin Pharmacol. 2011;51:1539–1548.
    1. Choy K.T., Wong A.Y., Kaewpreedee P., Sia S.F., Chen D., Hui K.P.Y., et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir Res. 2020;178:104786.
    1. Croxtall J.D., Perry C.M. Lopinavir/Ritonavir: a review of its use in the management of HIV-1 infection. Drugs. 2010;70:1885–1915.
    1. Thakur A., Tan S.P.F., Chan J.C.Y. Physiologically-based pharmacokinetic modeling to predict the clinical efficacy of the coadministration of lopinavir and ritonavir against SARS-CoV-2. Clin Pharmacol Therapeut. 2020;108:1176–1184.
    1. Kaletra Summary of product characteristics. Avalable at:
    1. Cavalcanti A.B., Zampieri F.G., Rosa R.G., Azevedo L.C.P., Veiga V.C., Avezum A., et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. New Engl J Med. 2020;383:2041–2052.
    1. The RECOVERY Collaborative Group Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;383:2030–2040.
    1. Maisonnasse P., Guedj J., Contreras V., Behillil S., Solas C., Marlin R., et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020;585:584–587.

Source: PubMed

3
Prenumerera