Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans

Nadine Striepens, Keith M Kendrick, Vanessa Hanking, Rainer Landgraf, Ullrich Wüllner, Wolfgang Maier, René Hurlemann, Nadine Striepens, Keith M Kendrick, Vanessa Hanking, Rainer Landgraf, Ullrich Wüllner, Wolfgang Maier, René Hurlemann

Abstract

There has been an unprecedented interest in the modulatory effects of intranasal oxytocin on human social cognition and behaviour, however as yet no study has actually demonstrated that this modality of administration increases concentrations of the peptide in the brain as well as blood in humans. Here using combined blood and cerebrospinal fluid (CSF) sampling in subjects receiving either 24 IU of oxytocin (n = 11) or placebo (n = 4) we have shown that oxytocin levels significantly increased in both plasma and CSF. However, whereas oxytocin plasma concentrations peaked at 15 min after intranasal administration and decreased after 75 min, CSF concentrations took up to 75 min to reach a significant level. Moreover, there was no correlation (r = <0.10) between oxytocin plasma and CSF concentrations. Together, these data provide crucial insights into the plasma and CSF kinetics of intranasally administered oxytocin.

Figures

Figure 1. Plasma and CSF kinetics of…
Figure 1. Plasma and CSF kinetics of oxytocin (OXT) administered intranasally at a dose of 24 IU.
(A) Shown are OXT plasma concentrations (mean ± SD) immediately before (baseline, 0 min) and after intranasal OXT or placebo (PLC) treatment. OXT plasma concentrations reached a plateau after 15 min and decreased after 60 min. Given for each time point in this period is the percentage increase (corrected for the lowest OXT concentration at 0 min) over PLC mean (0–90 min). (B) Shown are oxytocin (OXT) cerebrospinal fluid (CSF) concentrations following intranasal oxytocin (OXT) or placebo (PLC) treatment. CSF levels took up to 75 min to reach a significantly increased level in the OXT group. Given is the percentage increase (corrected for the lowest OXT concentration at 45 min) over PLC mean (45–75 min). Abbreviation: cOXT, oxytocin concentration.

References

    1. Striepens N., Kendrick K. M., Maier W. & Hurlemann R. Prosocial effects of oxytocin and clinical evidence for its therapeutic potential. Front. Neuroendocrinol. 32, 426–450 (2011).
    1. Stoop R. Neuromodulation by oxytocin and vasopressin. Neuron 76, 142–159 (2012).
    1. Zink C. F. & Meyer-Lindenberg A. Human neuroimaging of oxytocin and vasopressin in social cognition. Horm. Behav. 61, 400–409 (2012).
    1. Macdonald K. M. & Feifel D. Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders. Front. Neurosci. 7, 35 (2013).
    1. Kendrick K. M., Keverne E. B., Hinton M. R. & Goode J. A. Cerebrospinal fluid and plasma concentrations of oxytocin and vasopressin during parturition and vaginocervical stimulation in the sheep. Brain Res. Bull. 26, 803–807 (1991).
    1. Mens W. B., Laczi F., Tonnaer J. A., de Kloet E. R. & van Wimersma Greidanus T. B. Vasopressin and oxytocin content in cerebrospinal fluid and in various brain areas after administration of histamine and pentylenetetrazol. Pharmacol. Biochem. Behav. 19, 587–591 (1983).
    1. Neumann I. D., Maloumby R., Beiderbeck D. I., Lukas M. & Landgraf R. Increased brain and plasma oxytocin after nasal and peripheral administration in rats and mice. Psychoneuroendocrinology 38, 1985–1993 (2013).
    1. Born J. et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 5, 514–516 (2002).
    1. Chen X. Q., Fawcett J. R., Rahman Y. E., Ala T. A. & Frey I. W. Delivery of nerve growth factor to the brain via the olfactory pathway. J. Alzheimers Dis. 1, 35–44 (1998).
    1. Ross T. M. et al. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J. Neuroimmunol. 151, 66–77 (2004).
    1. Landgraf R. Plasma oxytocin concentrations in man after different routes of administration of synthetic oxytocin. Exp. Clin. Endocrinol. 85, 245–248 (1985).
    1. Burri A., Heinrichs M., Schedlowski M. & Kruger T. H. The acute effects of intranasal oxytocin administration on endocrine and sexual function in males. Psychoneuroendocrinology 33, 591–600 (2008).
    1. Gossen A. et al. Oxytocin plasma concentrations after single intranasal oxytocin administration - a study in healthy men. Neuropeptides 46, 211–215 (2012).
    1. van Ijzendoorn M. H., Bhandari R., van der Veen R., Grewen K. M. & Bakermans-Kranenburg M. J. Elevated salivary levels of oxytocin persist more than 7 h after intranasal administration. Front. Neurosci. 6, 174 (2012).
    1. Horvat-Gordon M., Granger D. A., Schwartz E. B., Nelson V. J. & Kivlighan K. T. Oxytocin is not a valid biomarker when measured in saliva by immunoassay. Physiol. Behav. 16, 445–448 (2005).
    1. Chang S. W., Barter J. W., Ebitz R. B., Watson K. K. & Platt M. L. Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta). Proc. Natl. Acad. Sci. U S A 109, 959–964 (2012).
    1. Thorne R. G., Pronk G. J., Padmanabhan V. & Frey W. H. 2nd Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127, 481–496 (2004).
    1. Dhuria S. V., Hanson L. R. & Frey W. H. 2nd Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. J. Pharmacol. Exp. Ther. 328, 312–320 (2009).
    1. Amico J. A., Tenicela R., Johnston J. & Robinson A. G. A time-dependent peak of oxytocin exists in cerebrospinal fluid but not in plasma of humans. J. Clin. Endocrinol. Metab. 57, 947–951 (1983).
    1. Kagerbauer S. M. et al. Plasma oxytocin and vasopressin do not predict neuropeptide concentrations in the human cerebrospinal fluid. J. Neuroendocrinol. 25, 668–673 (2013).
    1. Ekstedt J. CSF hydrodynamic studies in man. Normal hydrodynamic variables related to CSF pressure and flow. J. Neurol. Neurosurg. Psychiatry 41, 345–353 (1978).
    1. Linninger A. A. et al. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54, 291–302 (2007).
    1. First M. B., Gibbon M., Spitzer R. L., Williams J. B. W. & Benjamin L. S. Structured Clinical Interview for DSM-IV Axis II Personality Disorders, SCID-II. (American Psychiatric Press, 1997).
    1. First M. B., Spitzer R. L., Gibbon M. & Williams J. B. W. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Non-patient Edition, SCID-I/NP. (Biometrics Research Dept., New York State Psychiatric Institute, 2002).
    1. Horn W. L-P-S Leistungsprüfsystem. (Hogrefe, 1983).
    1. Lehrl S. Mehrfachwahl-Wortschatz-Intelligenztest, MWT-B. (Spitta Verlag, 2005).
    1. Reitan R. M. Validity of the Trail Making test as an indicator of organic brain damage. Percept. Mot. Skills 8, 271–276 (1958).
    1. Beck A. T., Ward C. H., Mendelson M. & Mock J. An inventory for measuring depression. Arch. Gen. Psychiatry 6, 561–571 (1961).
    1. Guastella A. J. et al. Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology 38, 612–625 (2013).

Source: PubMed

3
Prenumerera