Executive attention control and emotional responding in attention-deficit/hyperactivity disorder--A functional MRI study

Soonjo Hwang, Stuart F White, Zachary T Nolan, W Craig Williams, Stephen Sinclair, R J R Blair, Soonjo Hwang, Stuart F White, Zachary T Nolan, W Craig Williams, Stephen Sinclair, R J R Blair

Abstract

Background: There are suggestions that patients with attention-deficit/hyperactivity disorder (ADHD) show impairment in executive attention control and emotion regulation. This study investigated emotion regulation as a function of the recruitment of executive attention in patients with ADHD.

Methods: Thirty-five healthy children/adolescents (mean age = 13.91) and twenty-six children/adolescents with ADHD (mean age = 14.53) participated in this fMRI study. They completed the affective Stroop paradigm viewing positive, neutral and negative images under varying cognitive loads. A 3-way ANOVA (diagnosis-by-condition-by-emotion) was conducted on the BOLD response data. Following this, 2 3-way ANOVAs (diagnosis-by-condition-by-emotion) were applied to context-dependent psychophysiological interaction (gPPI) analyses generated from a dorsomedial frontal cortex and an amygdala seed (identified from the BOLD response ANOVA main effects of condition and emotion respectively).

Results: A diagnosis-by-condition interaction within dorsomedial frontal cortex revealed reduced recruitment of dorsomedial frontal cortex as a function of increased task demands in the children/adolescents with ADHD relative to healthy children/adolescents. The level of reduction in recruitment of dorsomedial frontal cortex was significantly correlated with symptom severity (total and hyperactivity) measured by Conner's Parent Report Scale in the children/adolescents with ADHD. In addition, analysis of gPPI data from a dorsomedial frontal cortex seed revealed significant diagnosis-by-condition interactions within lateral frontal cortex; connectivity between dorsomedial frontal cortex and lateral frontal cortex was reduced in the patients with ADHD relative to comparison youth during congruent and incongruent task trials relative to view trials. There were no interactions of group, or main effect of group, within the amygdala in the BOLD response ANOVA (though children/adolescents with ADHD showed increased responses to positive images within temporal cortical regions during task trials; identified by the diagnosis-by-condition-by-emotion interaction). However, analysis of gPPI data from an amygdala seed revealed decreased connectivity between amygdala and lentiform nucleus in the presence of emotional stimuli in children/adolescents with ADHD (diagnosis-by-emotion interaction).

Conclusion: The current study demonstrated disrupted recruitment of regions implicated in executive function and impaired connectivity within those regions in children/adolescents with ADHD. There were also indications of heightened representation of emotional stimuli in patients with ADHD. However, as the findings were specific for positive stimuli, the suggestion of a general failure in emotion regulation in ADHD was not supported.

Keywords: Affective Stroop; Attention-deficit/hyperactivity disorder; Emotion regulation; Executive attention; fMRI.

Figures

Fig. 1
Fig. 1
Experiment design. Example trial sequences: (a) positive view trial; (b) positive congruent trial; (c) positive incongruent trial.
Fig. 2
Fig. 2
Dorsomedial frontal cortex region showing a significant diagnosis-by-condition interaction and fusiform gyri showing significant diagnosis-by-condition-by-emotion interactions. (A) Right dorsomedial frontal gyrus (coordinates: 1.5, 1.5, 53.5) showing a significant group-by-condition interaction; (B) parameter estimates for right dorsomedial frontal gyrus; (C) negative correlation between symptom severity as measured by Conner parent report scale and BOLD response to incongruent-view trials right dorsomedial frontal gyrus in patients with ADHD; (D) and (F) left fusiform gyri (coordinates: − 37.5, − 58.5, − 12.5 and − 22.5, − 55.5, − 6.5, respectively) showing a significant group-by-condition-by-emotion interaction; (E) and (G) parameter estimates for left fusiform gyri. *: regressor contrasts showing significant group differences. (B), (E), (G) Y axis — parameter estimates. Incong_View: incongruent trials — view trials; Cong_View: congruent trials — view trials; Neg_Neu_Incong: negative incongruent trials — neutral incongruent trials; Neg_Neu_Cong: negative congruent trials — neutral congruent trials; Neg_Neu_View: negative view trials — neutral view trials; Pos_Neu_Incong: positive incongruent trials — neutral incongruent trials; Pos_Neu_Cong: positive congruent trials — neutral congruent trials; Pos_Neu_View: positive view trials — neutral view trials.
Fig. 3
Fig. 3
GPPI connectivity data: (A) lateral frontal gyrus (coordinates: 46.5, 16.5, 35.5) showed a significant diagnosis-by-task interaction in connectivity with right dorsomedial frontal gyrus seed; (B) parameter estimates for lateral frontal gyrus. (C) left lentiform nucleus (coordinates: − 22.5, − 7.5, − 0.5) showing a significant diagnosis-by-emotion interaction in connectivity with right amygdala seed and; (D) parameter estimates for left lentiform nucleus. (B), (D) Y axis: parameter estimates. Incong_View: incongruent trials — view trials; Cong_View: congruent trials — view trials; Neg_Neu: negative trials — neutral trials; Pos_Neu: positive trials — neutral trials.

References

    1. Arnsten A.F., Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J. Am. Acad. Child Adolesc. Psychiatry. 2012;51(4):356–367. (doi: S0890-8567(12)00043-3 [pii])
    1. Association, A. P. American Psychiatric Association; Washington D.C.: 2013. Diagnostic and Statistical Manual 5.
    1. Banich M.T., Burgess G.C., Depue B.E., Ruzic L., Bidwell L.C., Hitt-Laustsen S., …, Willcutt E.G. The neural basis of sustained and transient attentional control in young adults with ADHD. Neuropsychologia. 2009;47(14):3095–3104. (doi: S0028-3932(09)00298-X [pii])
    1. Barkley R.A., Fischer M. The unique contribution of emotional impulsiveness to impairment in major life activities in hyperactive children as adults. J. Am. Acad. Child Adolesc. Psychiatry. 2010;49(5):503–513. (doi: 00004583-201005000-00011 [pii])
    1. Blair K.S., Smith B.W., Mitchell D.G., Morton J., Vythilingam M., Pessoa L., …, Blair R.J. Modulation of emotion by cognition and cognition by emotion. Neuroimage. 2007;35(1):430–440. (doi: S1053-8119(06)01117-7 [pii])
    1. Brotman M.A., Rich B.A., Guyer A.E., Lunsford J.R., Horsey S.E., Reising M.M., …, Leibenluft E. Amygdala activation during emotion processing of neutral faces in children with severe mood dysregulation versus ADHD or bipolar disorder. Am. J. Psychiatry. 2010;167(1):61–69. (doi: appi.ajp.2009.09010043 [pii])
    1. Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology. 2010;35(1):278–300. (doi: npp2009120 [pii])
    1. Bush G., Frazier J.A., Rauch S.L., Seidman L.J., Whalen P.J., Jenike M.A., …, Biederman J. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biol. Psychiatry. 1999;45(12):1542–1552. (doi: S0006322399000839 [pii])
    1. Christakou A., Murphy C.M., Chantiluke K., Cubillo A.I., Smith A.B., Giampietro V., …, Rubia K. Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Mol. Psychiatry. 2013;18(2):236–244. (doi: mp2011185 [pii])
    1. Clithero J.A., Rangel A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 2014;9(9):1289–1302.
    1. Conners C.K., Sitarenios G., Parker J.D., Epstein J.N. The revised Conners' Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J. Abnorm. Child Psychol. 1998;26(4):257–268.
    1. Cortese S., Kelly C., Chabernaud C., Proal E., Di Martino A., Milham M.P., Castellanos F.X. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am. J. Psychiatry. 2012;169(10):1038–1055.
    1. De La Fuente A., Xia S., Branch C., Li X. A review of attention-deficit/hyperactivity disorder from the perspective of brain networks. Front. Hum. Neurosci. 2013;7:192.
    1. Del Campo N., Fryer T.D., Hong Y.T., Smith R., Brichard L., Acosta-Cabronero J., …, Muller U. A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment. Brain. 2013;136(Pt 11):3252–3270. (doi: awt263 [pii])
    1. Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 1995;18:193–222.
    1. Durston S., Tottenham N.T., Thomas K.M., Davidson M.C., Eigsti I.M., Yang Y., …, Casey B.J. Differential patterns of striatal activation in young children with and without ADHD. Biol. Psychiatry. 2003;53(10):871–878.
    1. Erthal F.S., de Oliveira L., Mocaiber I., Pereira M.G., Machado-Pinheiro W., Volchan E., Pessoa L. Load-dependent modulation of affective picture processing. Cogn. Affect. Behav. Neurosci. 2005;5(4):388–395.
    1. Etkin A., Prater K.E., Hoeft F., Menon V., Schatzberg A.F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry. 2010;167(5):545–554. (doi: appi.ajp.2009.09070931 [pii])
    1. Graziano P.A., McNamara J.P., Geffken G.R., Reid A.M. Differentiating co-occurring behavior problems in children with ADHD: patterns of emotional reactivity and executive functioning. J. Atten. Disord. 2013;17(3):249–260.
    1. Gyurak A., Gross J.J., Etkin A. Explicit and implicit emotion regulation: a dual-process framework. Cogn. Emot. 2011;25(3):400–412. (doi: 933887834 [pii])
    1. Hart H., Radua J., Nakao T., Mataix-Cols D., Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. 2013;70(2):185–198. (doi: 1485446 [pii])
    1. Herrmann M.J., Biehl S.C., Jacob C., Deckert J. Neurobiological and psychophysiological correlates of emotional dysregulation in ADHD patients. Atten. Defic. Hyperact. Disord. 2010;2(4):233–239.
    1. Kalisch R. The functional neuroanatomy of reappraisal: time matters. Neurosci. Biobehav. Rev. 2009;33(8):1215–1226. (doi: S0149-7634(09)00083-9 [pii])
    1. Karalunas S.L., Fair D., Musser E.D., Aykes K., Iyer S.P., Nigg J.T. Subtyping attention-deficit/hyperactivity disorder using temperament dimensions: toward biologically based nosologic criteria. JAMA Psychiatry. 2014;71(9):1015–1024.
    1. Kaufman J., Birmaher B., Brent D., Rao U., Flynn C., Moreci P., …, Ryan N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J. Am. Acad. Child Adolesc. Psychiatry. 1997;36(7):980–988.
    1. Lang P.J., B. M., Cuthbert B.N. University of Florida; Gainesville, FL: 2005. International Affective Picture System (IAPS): Affetive Ratings of Pictures and Instruction Manual.
    1. Maier S.J., Szalkowski A., Kamphausen S., Feige B., Perlov E., Kalisch R., …, van Elst L.T. Altered cingulate and amygdala response towards threat and safe cues in attention deficit hyperactivity disorder. Psychol. Med. 2013:1–14. (doi: S0033291713000469 [pii])
    1. Marsh A.A., Finger E.C., Mitchell D.G., Reid M.E., Sims C., Kosson D.S., …, Blair R.J. Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am. J. Psychiatry. 2008;165(6):712–720. (doi: appi.ajp.2007.07071145 [pii])
    1. Martel M.M. Research review: a new perspective on attention-deficit/hyperactivity disorder: emotion dysregulation and trait models. J. Child Psychol. Psychiatry. 2009;50(9):1042–1051.
    1. Mayer A.R., Teshiba T.M., Franco A.R., Ling J., Shane M.S., Stephen J.M., Jung R.E. Modeling conflict and error in the medial frontal cortex. Hum. Brain Mapp. 2012;33(12):2843–2855.
    1. McCarthy H., Skokauskas N., Frodl T. Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol. Med. 2013:1–12. (doi: S0033291713001037 [pii])
    1. McLaren D.G., Ries M.L., Xu G., Johnson S.C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage. 2012;61(4):1277–1286. (doi: S1053-8119(12)00349-7 [pii])
    1. Mitchell D.G., Richell R.A., Leonard A., Blair R.J. Emotion at the expense of cognition: psychopathic individuals outperform controls on an operant response task. J. Abnorm. Psychol. 2006;115(3):559–566. (doi: 2006-09167-017 [pii])
    1. Mitchell D.G., Nakic M., Fridberg D., Kamel N., Pine D.S., Blair R.J. The impact of processing load on emotion. Neuroimage. 2007;34(3):1299–1309. (doi: S1053-8119(06)01038-X [pii])
    1. Mitchell D.G., Luo Q., Mondillo K., Vythilingam M., Finger E.C., Blair R.J. The interference of operant task performance by emotional distracters: an antagonistic relationship between the amygdala and frontoparietal cortices. Neuroimage. 2008;40(2):859–868. (doi: S1053-8119(07)00701-X [pii])
    1. Musser E.D., Backs R.W., Schmitt C.F., Ablow J.C., Measelle J.R., Nigg J.T. Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD) J. Abnorm. Child Psychol. 2011;39(6):841–852.
    1. Musser E.D., Galloway-Long H.S., Frick P.J., Nigg J.T. Emotion regulation and heterogeneity in attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2013;52(2):163–171. (e162. doi: S0890-8567(12)00875-1 [pii])
    1. Nakao T., Radua J., Rubia K., Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am. J. Psychiatry. 2011;168(11):1154–1163.
    1. Nigg J.T. Temperament and developmental psychopathology. J. Child Psychol. Psychiatry. 2006;47(3–4):395–422.
    1. Ochsner K.N., Gross J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005;9(5):242–249. (doi: S1364-6613(05)00090-2 [pii])
    1. Ochsner K.N., Bunge S.A., Gross J.J., Gabrieli J.D. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 2002;14(8):1215–1229.
    1. Passarotti A.M., Sweeney J.A., Pavuluri M.N. Differential engagement of cognitive and affective neural systems in pediatric bipolar disorder and attention deficit hyperactivity disorder. J. Int. Neuropsychol. Soc. 2010;16(1):106–117. (doi: S1355617709991019 [pii])
    1. Passarotti A.M., Sweeney J.A., Pavuluri M.N. Emotion processing influences working memory circuits in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry. 2010;49(10):1064–1080. (doi: S0890-8567(10)00563-0 [pii])
    1. Pessoa L., McKenna M., Gutierrez E., Ungerleider L.G. Neural processing of emotional faces requires attention. Proc. Natl. Acad. Sci. U. S. A. 2002;99(17):11458–11463. (172403899 [pii])
    1. Pessoa L., Padmala S., Morland T. Fate of unattended fearful faces in the amygdala is determined by both attentional resources and cognitive modulation. Neuroimage. 2005;28(1):249–255. (doi: S1053-8119(05)00363-0 [pii])
    1. Phillips M.L., Drevets W.C., Rauch S.L., Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry. 2003;54(5):515–528. (doi: S0006322303001719 [pii])
    1. Plichta M.M., Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci. Biobehav. Rev. 2014;38:125–134.
    1. Posner J., Maia T.V., Fair D., Peterson B.S., Sonuga-Barke E.J., Nagel B.J. The attenuation of dysfunctional emotional processing with stimulant medication: an fMRI study of adolescents with ADHD. Psychiatry Res. 2011;193(3):151–160. (doi: S0925-4927(11)00071-0 [pii])
    1. Posner J., Rauh V., Gruber A., Gat I., Wang Z., Peterson B.S. Dissociable attentional and affective circuits in medication-naive children with attention-deficit/hyperactivity disorder. Psychiatry Res. 2013;213(1):24–30. (doi: S0925-4927(13)00022-X [pii])
    1. Rapport M.D., Orban S.A., Kofler M.J., Friedman L.M. Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clin. Psychol. Rev. 2013 (doi: S0272-7358(13)00121-9 [pii])
    1. Reimherr F.W., Marchant B.K., Strong R.E., Hedges D.W., Adler L., Spencer T.J., …, Soni P. Emotional dysregulation in adult ADHD and response to atomoxetine. Biol. Psychiatry. 2005;58(2):125–131. (doi: S0006-3223(05)00501-9 [pii])
    1. Rubia K., Overmeyer S., Taylor E., Brammer M., Williams S.C., Simmons A., Bullmore E.T. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am. J. Psychiatry. 1999;156(6):891–896.
    1. Rubia K., Halari R., Cubillo A., Mohammad A.M., Brammer M., Taylor E. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology. 2009;57(7–8):640–652. (doi: S0028-3908(09)00279-2 [pii])
    1. Schneider M.F., Krick C.M., Retz W., Hengesch G., Retz-Junginger P., Reith W., Rosler M. Impairment of fronto-striatal and parietal cerebral networks correlates with attention deficit hyperactivity disorder (ADHD) psychopathology in adults — a functional magnetic resonance imaging (fMRI) study. Psychiatry Res. 2010;183(1):75–84. (doi: S0925-4927(10)00118-6 [pii])
    1. Schulz K.P., Himelstein J., Halperin J.M., Newcorn J.H. Neurobiological models of attention-deficit/hyperactivity disorder: a brief review of the empirical evidence. CNS Spectr. 2000;5(6):34–44.
    1. Shaw P., Stringaris A., Nigg J., Leibenluft E. Emotion dysregulation in attention deficit hyperactivity disorder. Am. J. Psychiatry. 2014 (doi: 1827806 [pii])
    1. Sobanski E., Banaschewski T., Asherson P., Buitelaar J., Chen W., Franke B., …, Faraone S.V. Emotional lability in children and adolescents with attention deficit/hyperactivity disorder (ADHD): clinical correlates and familial prevalence. J. Child Psychol. Psychiatry. 2010;51(8):915–923. (doi: JCPP2217 [pii])
    1. Song Y., Hakoda Y. An fMRI study of the functional mechanisms of Stroop/reverse-Stroop effects. Behav. Brain Res. 2015;290:187–196.
    1. Sonuga-Barke E.J. Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behav. Brain Res. 2002;130(1–2):29–36. (doi: S0166432801004326 [pii])
    1. Sonuga-Barke E.J., Sergeant J.A., Nigg J., Willcutt E. Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child Adolesc. Psychiatr. Clin. N. Am. 2008;17(2):367–384. (ix. doi: S1056-4993(07)00122-8 [pii])
    1. Talairach, Tournoux . Thieme; Stuttgart: 1988. Co-Planar Stereotaxic Atlas of the Human Brain.
    1. Valera E.M., Faraone S.V., Murray K.E., Seidman L.J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2007;61(12):1361–1369. (doi: S0006-3223(06)00803-1 [pii])
    1. Wechsler D. Psychological Corporation; San Antonio, TX: 1999. Wechsler Abbreviated Scale of Intelligence.
    1. Weissman D.H., Carp J. The congruency effect in the posterior medial frontal cortex is more consistent with time on task than with response conflict. PLoS One. 2013;8(4):e62405.

Source: PubMed

3
Prenumerera