Platelets and Multi-Organ Failure in Sepsis

Elisabetta Greco, Enrico Lupia, Ornella Bosco, Barbara Vizio, Giuseppe Montrucchio, Elisabetta Greco, Enrico Lupia, Ornella Bosco, Barbara Vizio, Giuseppe Montrucchio

Abstract

Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models.

Keywords: AKI; ARDS; DIC; antiplatelets; multi-organ failure; platelet; sepsis; septic shock; thrombocytopenia.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Howell M.D., Davis A. Management of Sepsis and Septic Shock. JAMA. 2017;317:847–848. doi: 10.1001/jama.2017.0131.
    1. Bone R.C., Francis P.B., Pierce A.K. Intravascular coagulation associated with the adult respiratory distress syndrome. Am. J. Med. 1976;61:585–589. doi: 10.1016/0002-9343(76)90135-2.
    1. Thiery-Antier N., Binquet C., Vinault S., Boisramé-Helms J., Quenot J.P., Epidemiology of Septic Shock Group Is Thrombocytopenia an Early Prognostic Marker in Septic Shock? Crit. Care Med. 2016;44:764–772. doi: 10.1097/CCM.0000000000001520.
    1. Claushuis T.A.M., van Vught L.A. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients. Blood. 2016;127:3062–3072. doi: 10.1182/blood-2015-11-680744.
    1. De Stoppelaar S.F., van’t Veer C., van der Poll T. The role of platelets in sepsis. Thromb. Haemost. 2014;112:666–677. doi: 10.1160/TH14-02-0126.
    1. Baughman R.P., Lower E.E., Flessa H.C., Tollerud D.J. Thrombocytopenia in the intensive care unit. Chest. 1993;104:1243–1247. doi: 10.1378/chest.104.4.1243.
    1. Lundahl T.H., Petersson J., Fagerberg I.H., Berg S., Lindahl T.L. Impaired platelet function correlates with multi-organ dysfunction. A study of patients with sepsis. Platelets. 1998;9:223–225. doi: 10.1080/09537109876735.
    1. Adamzik M., Görlinger K., Peters J., Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit. Care. 2012;16:R204. doi: 10.1186/cc11816.
    1. Sakamaki F., Ishizaka A., Handa M., Fujishima S., Urano T., Sayama K., Nakamura H., Kanazawa M., Kawashiro T., Katayama M. Soluble form of P-selectin in plasma is elevated in acute lung injury. Am. J. Respir. Crit. Care Med. 1995;151:1821–1826. doi: 10.1164/ajrccm.151.6.7539327.
    1. Russwurm S., Vickers J., Meier-Hellmann A., Spangenberg P., Bredle D., Reinhart K., Lösche W. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock. 2002;17:263–268. doi: 10.1097/00024382-200204000-00004.
    1. Gawaz M., Dickfeld T., Bogner C., Fateh-Moghadam S., Neumann F.J. Platelet function in septic multiple organ dysfunction syndrome. Intensiv. Care Med. 1997;23:379–385. doi: 10.1007/s001340050344.
    1. De Blasi R.A., Cardelli P., Costante A., Sandri M., Mercieri M., Arcioni R. Immature platelet fraction in predicting sepsis in critically ill patients. Intensiv. Care Med. 2013;39:636–643. doi: 10.1007/s00134-012-2725-7.
    1. Segre E., Pigozzi L., Lison D., Pivetta E., Bosco O., Vizio B., Suppo U., Turvani F., Morello F., Battista S., et al. May thrombopoietin be a useful marker of sepsis severity assessment in patients with SIRS entering the emergency department? Clin. Chem. Lab. Med. 2014;52:1479–1483. doi: 10.1515/cclm-2014-0219.
    1. Garraud O., Hamzeh-Cognasse H., Pozzetto B., Cavaillon J.M., Cognasse F. Bench-to-bedside review: Platelets and active immune functions—New clues for immunopathology? Crit. Care. 2013;17:236. doi: 10.1186/cc12716.
    1. Vieira-de-Abreu A., Campbell R.A., Weyrich A.S., Zimmerman G.A. Platelets: Versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin. Immunopathol. 2012;34:5–30. doi: 10.1007/s00281-011-0286-4.
    1. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5:66–72. doi: 10.4161/viru.26907.
    1. Gawaz M., Fateh-Moghadam S., Pilz G., Gurland H.J., Werdan K. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur. J. Clin. Investig. 1995;25:843–851. doi: 10.1111/j.1365-2362.1995.tb01694.x.
    1. Hurley S.M., Lutay N., Holmqvist B., Shannon O. The Dynamics of Platelet Activation during the Progression of Streptococcal Sepsis. PLoS ONE. 2016;11:e0163531. doi: 10.1371/journal.pone.0163531.
    1. Haselmayer P., Grosse-Hovest L., von Landenberg P., Schild H., Radsak M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007;110:1029–1035. doi: 10.1182/blood-2007-01-069195.
    1. Weber B., Schuster S., Zysset D., Rihs S., Dickgreber N., Schürch C., Riether C., Siegrist M., Schneider C., Pawelski H., et al. TREM-1 deficiency can attenuate disease severitywithout affecting pathogen clearance. PLoS Pathog. 2014;10:e1003900. doi: 10.1371/journal.ppat.1003900.
    1. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., McAvoy E., Sinclair G.D., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007;13:463–469. doi: 10.1038/nm1565.
    1. Czaikoski P.G., Mota J.M., Nascimento D.C., Sônego F., Castanheira F.V., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O., et al. Neutrophil Extracellular Traps Induce Organ Damage during Experimental and Clinical Sepsis. PLoS ONE. 2016;11:e0148142. doi: 10.1371/journal.pone.0148142.
    1. Ince C., Mayeux P.R., Nguyen T., Gomez H., Kellum J.A., Ospina-Tascón G.A., Hernandez G., Murray P., De Backer D., ADQI XIV Workgroup The endothelium in sepsis. Shock. 2016;45:259–270. doi: 10.1097/SHK.0000000000000473.
    1. Mine S., Fujisaki T., Suematsu M., Tanaka Y. Activated platelets and endothelial cell interaction with neutrophilsunder flow conditions. Intern. Med. 2001;40:1085–1092. doi: 10.2169/internalmedicine.40.1085.
    1. Doré M., Korthuis R.J., Granger D.N., Entman M.L., Smith C.W. P-selectin mediatesspontaneous leukocyte rolling in vivo. Blood. 1993;82:1308–1316.
    1. Yeo E.L., Sheppard J.A., Feuerstein I.A. Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model) Blood. 1994;83:2498–2507.
    1. Zarbock A., Singbartl K., Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J. Clin. Investig. 2006;116:3211–3219. doi: 10.1172/JCI29499.
    1. Burnier L., Fontana P., Kwak B.R., Angelillo-Scherrer A. Cell-derived microparticles in haemostasis and vascular medicine. Thromb. Haemost. 2009;101:439–451. doi: 10.1160/TH08-08-0521.
    1. Tőkés-Füzesi M., Woth G., Ernyey B., Vermes I., Mühl D., Bogár L., Kovács G.L. Microparticles and acute renal dysfunction in septic patients. J. Crit. Care. 2013;28:141–147. doi: 10.1016/j.jcrc.2012.05.006.
    1. Woth G., Tőkés-Füzesi M., Magyarlaki T., Kovács G.L., Vermes I., Mühl D. Activated platelet-derived microparticle numbers are elevated in patients with severe fungal (Candida albicans) sepsis. Ann. Clin. Biochem. 2012;49:554–560. doi: 10.1258/acb.2012.011215.
    1. Ohuchi M., Fujino K., Kishimoto T., Yamane T., Hamamoto T., Tabata T., Tsujita Y., Matsushita M., Takahashi K., Matsumura K., et al. Association of the PlasmaPlatelet-Derived Microparticles to Platelet Count Ratio with Hospital Mortalityand Disseminated Intravascular Coagulopathy in Critically Ill Patients. J. Atheroscler. Thromb. 2015;22:773–782. doi: 10.5551/jat.29439.
    1. Li H., Meng X., Liang X., Gao Y., Cai S. Administration of microparticles fromblood of the lipopolysaccharide-treated rats serves to induce pathologic changes of acute respiratory distress syndrome. Exp. Biol. Med. Maywood. 2015;240:1735–1741. doi: 10.1177/1535370215591830.
    1. Mortaza S., Martinez M.C., Baron-Menguy C., Burban M., de la Bourdonnaye M., Fizanne L., Pierrot M., Calès P., Henrion D., Andriantsitohaina R., et al. Detrimental hemodynamic and inflammatory effects of microparticles originating from septic rats. Crit. Care Med. 2009;37:2045–2050. doi: 10.1097/CCM.0b013e3181a00629.
    1. Lupia E., Goffi A., Bosco O., Montrucchio G. Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases. Mediat. Inflamm. 2012;2012:390892. doi: 10.1155/2012/390892.
    1. Tibbles H.E., Navara C.S., Hupke M.A., Vassilev A.O., Uckun F.M. Thrombopoietin induces p-selectin expression on platelets and subsequent platelet/leukocyte interactions. Biochem. Biophys. Res. Commun. 2002;292:987–991. doi: 10.1006/bbrc.2002.6759.
    1. Lupia E., Bosco O., Bergerone S., Dondi A.E., Goffi A., Oliaro E., Cordero M., Del Sorbo L., Trevi G., Montrucchio G. Thrombopoietin contributes to enhanced platelet activation in patients with unstable angina. J. Am. Coll. Cardiol. 2006;48:2195–2203. doi: 10.1016/j.jacc.2006.04.106.
    1. Brizzi M.F., Battaglia E., Rosso A., Strippoli P., Montrucchio G., Camussi G., Pegoraro L. Regulation of polymorphonuclear cell activation by thrombopoietin. J. Clin. Investig. 1997;99:1576–1584. doi: 10.1172/JCI119320.
    1. Montrucchio G., Brizzi M.F., Calosso G., Marengo S., Pegoraro L., Camussi G. Effects of recombinant human megakaryocyte growth and development factor on plateletactivation. Blood. 1996;87:2762–2768.
    1. Lupia E., Bosco O., Mariano F., Dondi A.E., Goffi A., Spatola T., Cuccurullo A., Tizzani P., Brondino G., Stella M., et al. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation. J. Thromb. Haemost. 2009;7:1000–1008. doi: 10.1111/j.1538-7836.2009.03348.x.
    1. Zakynthinos S.G., Papanikolaou S., Theodoridis T., Zakynthinos E.G., Christopoulou-Kokkinou V., Vana M.D., Katsaris G., Mavrommatis A.C. Sepsis severity is the major determinant of circulating thrombopoietin levels in septic patients. Crit. Care Med. 2004;32:1004–1010. doi: 10.1097/01.CCM.0000121433.61546.A0.
    1. Cuccurullo A., Greco E., Lupia E., De Giuli P., Bosco O., Martin-Conte E., Spatola T., Turco E., Montrucchio G. Blockade of Thrombopoietin Reduces Organ Damage in Experimental Endotoxemia and Polymicrobial Sepsis. PLoS ONE. 2016;11:e0151088. doi: 10.1371/journal.pone.0151088.
    1. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013;13:34–45. doi: 10.1038/nri3345.
    1. Morelli A., Passariello M. Hemodynamic coherence in sepsis. Best Pract. Res. Clin. Anaesthesiol. 2016;30:453–463. doi: 10.1016/j.bpa.2016.10.009.
    1. Shapiro N.I., Arnold R., Sherwin R., O’Connor J., Najarro G., Singh S., Lundy D., Nelson T., Trzeciak S.W., Jones A.E. The association of near infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit. Care. 2011;15:R223. doi: 10.1186/cc10463.
    1. Trzeciak S., McCoy J.V., Phillip Dellinger R., Arnold R.C., Rizzuto M., Abate N.L., Shapiro N.I., Parrillo J.E., Hollenberg S.M. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensiv. Care Med. 2008;34:2210–2217. doi: 10.1007/s00134-008-1193-6.
    1. Top A.P., Ince C., de Meij N., van Dijk M., Tibboel D. Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care. Crit. Care Med. 2011;39:8–13. doi: 10.1097/CCM.0b013e3181fb7994.
    1. Hotchkiss R.S., Swanson P.E., Freeman B.D., Tinsley K.W., Cobb J.P., Matuschak G.M., Buchman T.G., Karl I.E. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 1999;27:1230–1251. doi: 10.1097/00003246-199907000-00002.
    1. Carré J.E., Orban J.-C., Re L., Felsmann K., Iffert W., Bauer M., Suliman H.B., Piantadosi C.A., Mayhew T.M., Breen P., et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am. J. Respir. Crit. Care Med. 2010;182:745–751. doi: 10.1164/rccm.201003-0326OC.
    1. Brealey D., Karyampudi S., Jacques T.S., Novelli M., Stidwill R., Taylor V., Smolenski R.T., Singer M. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;286:R491–R497. doi: 10.1152/ajpregu.00432.2003.
    1. Brealey D., Brand M., Hargreaves I., Heales S., Land J., Smolenski R., Davies N.A., Cooper C.E., Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223. doi: 10.1016/S0140-6736(02)09459-X.
    1. Vanasco V., Magnani N.D., Cimolai M.C., Valdez L.B., Evelson P., Boveris A., Alvarez S. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential. J. Bioenerg. Biomembr. 2012;44:243. doi: 10.1007/s10863-012-9426-3.
    1. Boulos M., Astiz M.E., Barua R.S., Osman M. Impaired mitochondrial function inducedby serum from septic shock patients is attenuated by inhibition of nitric oxidesynthase and poly(ADP-ribose) synthase. Crit. Care Med. 2003;31:353–358. doi: 10.1097/01.CCM.0000050074.82486.B2.
    1. Garrabou G., Morén C., López S., Tobías E., Cardellach F., Miró O., Casademont J. The effects of sepsis on mitochondria. J. Infect. Dis. 2012;205:392–400. doi: 10.1093/infdis/jir764.
    1. Sjövall F., Morota S., Persson J., Hansson M.J., Elmér E. Patients with sepsis exhibit increased mitochondrial respiratory capacity in peripheral blood immune cells. Crit. Care. 2013;17:R152. doi: 10.1186/cc12831.
    1. Puskarich M.A., Kline J.A., Watts J.A., Shirey K., Hosler J., Jones A.E. Early alterations in platelet mitochondrial function are associated with survival and organ failure in patients with septic shock. J. Crit. Care. 2016;31:63–67. doi: 10.1016/j.jcrc.2015.10.005.
    1. Rondina M.T., Schwertz H., Harris E.S., Kraemer B.F., Campbell R.A., Mackman N., Grissom C.K., Weyrich A.S., Zimmerman G.A. The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J. Thromb. Haemost. 2011;9:748–758. doi: 10.1111/j.1538-7836.2011.04208.x.
    1. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151:1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Oudemans-van Straaten H.M., Spoelstra-de Man A.M., de Waard M.C. Vitamin C revisited. Crit. Care. 2014;18:460. doi: 10.1186/s13054-014-0460-x.
    1. Rodemeister S., Biesalski H.K. There’s life in the old dog yet: Vitamin C as a therapeutic option in endothelial dysfunction. Crit. Care. 2014;18:461. doi: 10.1186/s13054-014-0461-9.
    1. Yadav H., Kor D.J. Platelets in the pathogenesis of acute respiratory distress syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2015;309:L915–L923. doi: 10.1152/ajplung.00266.2015.
    1. Katz J.N., Kolappa K.P., Becker R.C. Beyond thrombosis: The versatile platelet in critical illness. Chest. 2011;139:658–668. doi: 10.1378/chest.10-1971.
    1. Grommes J., Alard J.E., Drechsler M., Wantha S., Mörgelin M., Kuebler W.M., Jacobs M., von Hundelshausen P., Markart P., Wygrecka M., et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am. J. Respir. Crit. Care Med. 2012;185:628–636. doi: 10.1164/rccm.201108-1533OC.
    1. Yiming M.T., Lederer D.J., Sun L., Huertas A., Issekutz A.C., Bhattacharya S. Platelets enhance endothelial adhesiveness in high tidal volume ventilation. Am. J. Respir. Cell Mol. Biol. 2008;39:569–575. doi: 10.1165/rcmb.2007-0332OC.
    1. Carvalho A.C., DeMarinis S., Scott C.F., Silver L.D., Schmaier A.H., Colman R.W. Activation of the contact system of plasma proteolysis in the adult respiratory distress syndrome. J. Lab Clin. Med. 1988;112:270–277.
    1. Davis R.P., Miller-Dorey S., Jenne C.N. Platelets and coagulation in infection. Clin. Transl. Immunol. 2016;5:e89. doi: 10.1038/cti.2016.39.
    1. Ammollo C.T., Semeraro F., Xu J., Esmon N.L., Esmon C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J. Thromb. Haemost. 2011;9:1795–1803. doi: 10.1111/j.1538-7836.2011.04422.x.
    1. Fuchs T.A., Bhandari A.A., Wagner D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118:3708–3714. doi: 10.1182/blood-2011-01-332676.
    1. Semeraro F., Ammollo C.T., Morrissey J.H., Dale G.L., Friese P., Esmon N.L., Esmon C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952–1961. doi: 10.1182/blood-2011-03-343061.
    1. McDonald B., Urrutia R., Yipp B.G., Jenne C.N., Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–333. doi: 10.1016/j.chom.2012.06.011.
    1. Singbartl K., Ley K. Leukocyte recruitment and acute renal failure. J. Mol. Med. 2004;82:91–101. doi: 10.1007/s00109-003-0498-8.
    1. Singbartl K., Forlow S.B., Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure. FASEB J. 2001;15:2337–2344. doi: 10.1096/fj.01-0199com.
    1. Flynn A., Chokkalingam M.B., Mather P.J. Sepsis-induced cardiomyopathy: A review of pathophysiologic mechanisms. Heart Fail Rev. 2010;15:605–611. doi: 10.1007/s10741-010-9176-4.
    1. Azevedo L.C., Janiszewski M., Pontieri V., Pedro M.d.A., Bassi E., Tucci P.J., Laurindo F.R. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit. Care. 2007;11:R120. doi: 10.1186/cc6176.
    1. Lupia E., Spatola T., Cuccurullo A., Bosco O., Mariano F., Pucci A., Ramella R., Alloatti G., Montrucchio G. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res. Cardiol. 2010;105:609–620. doi: 10.1007/s00395-010-0103-6.
    1. Muhlestein J.B. Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients. Thromb. Haemost. 2010;103:71–82. doi: 10.1160/TH09-03-0177.
    1. Akinosoglou K., Alexopoulos D. Use of antiplatelet agents in sepsis: A glimpse into the future. Thromb. Res. 2014;133:131–138. doi: 10.1016/j.thromres.2013.07.002.
    1. Erlich J.M., Talmor D.S., Cartin-Ceba R., Gajic O., Kor D.J. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: A population-based cohort study. Chest. 2011;139:289–295. doi: 10.1378/chest.10-0891.
    1. Kor D.J., Erlich J., Gong M.N., Malinchoc M., Carter R.E., Gajic O., Talmor D.S. U.S. Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators. Association of prehospitalization aspirin therapy and acute lung injury: Results of a multicenter international observational study of at-risk patients. Crit. Care Med. 2011;39:2393–2400. doi: 10.1097/CCM.0b013e318225757f.
    1. Winning J., Reichel J., Eisenhut Y., Hamacher J., Kohl M., Deigner H.P., Claus R.A., Bauer M., Lösche W. Anti-platelet drugs and outcome in severe infection: Clinical impact and underlying mechanisms. Platelets. 2009;20:50–57. doi: 10.1080/09537100802503368.
    1. Valerio-Rojas J.C., Jaffer I.J., Kor D.J., Gajic O., Cartin-Ceba R. Outcomes of severe sepsis and septic shock patients on chronic antiplatelet treatment: A historical cohort study. Crit. Care Res. Pract. 2013;2013:782573. doi: 10.1155/2013/782573.
    1. Gross A.K., Dunn S.P., Feola D.J., Martin C.A., Charnigo R., Li Z., Abdel-Latif A., Smyth S.S. Clopidogrel treatment and the incidence and severity of community acquired pneumonia in a cohort study and meta-analysis of antiplatelet therapy in pneumonia and critical illness. J. Thromb. Thromb. 2013;35:147–154. doi: 10.1007/s11239-012-0833-4.
    1. Wang L., Li H., Gu X., Wang Z., Liu S., Chen L. Effect of Antiplatelet Therapy on Acute Respiratory Distress Syndrome and Mortality in Critically Ill Patients: A Meta-Analysis. PLoS ONE. 2016;11:e0154754. doi: 10.1371/journal.pone.0154754.
    1. Wiewel M.A., de Stoppelaar S.F., van Vught L.A., Frencken J.F., Hoogendijk A.J., Klein Klouwenberg P.M., Horn J., Bonten M.J., Zwinderman A.H., Cremer O.L., et al. MARS Consortium. Chronic antiplatelet therapy is not associated with alterations in the presentation, outcome, or host response biomarkers during sepsis: A propensity-matched analysis. Intensiv. Care Med. 2016;42:352–360. doi: 10.1007/s00134-015-4171-9.
    1. Kor D.J., Carter R.E., Park P.K., Festic E., Banner-Goodspeed V.M., Hinds R., Talmor D., Gajic O., Ware L.B., Gong M.N. US Critical Illness and Injury Trials Group: Lung Injury Prevention with Aspirin Study Group (USCIITG: LIPS-A). Effect of Aspirin on Development of ARDS in At-Risk Patients Presenting to the Emergency Department: The LIPS-A Randomized Clinical Trial. JAMA. 2016;315:2406–2414. doi: 10.1001/jama.2016.6330.
    1. Eisen D.P., Moore E.M., Leder K., Lockery J., McBryde E.S., McNeil J.J., Pilcher D., Wolfe R., Woods R.L. AspiriN to Inhibit SEPSIS (ANTISEPSIS) randomised controlled trial protocol. BMJ Open. 2017;7:e013636. doi: 10.1136/bmjopen-2016-013636.
    1. . [(accessed on 28 August 2017)]; Available online: .
    1. . [(accessed on 28 August 2017)]; Available online: .

Source: PubMed

3
Prenumerera