Psoriasis Pathogenesis and Treatment

Adriana Rendon, Knut Schäkel, Adriana Rendon, Knut Schäkel

Abstract

Research on psoriasis pathogenesis has largely increased knowledge on skin biology in general. In the past 15 years, breakthroughs in the understanding of the pathogenesis of psoriasis have been translated into targeted and highly effective therapies providing fundamental insights into the pathogenesis of chronic inflammatory diseases with a dominant IL-23/Th17 axis. This review discusses the mechanisms involved in the initiation and development of the disease, as well as the therapeutic options that have arisen from the dissection of the inflammatory psoriatic pathways. Our discussion begins by addressing the inflammatory pathways and key cell types initiating and perpetuating psoriatic inflammation. Next, we describe the role of genetics, associated epigenetic mechanisms, and the interaction of the skin flora in the pathophysiology of psoriasis. Finally, we include a comprehensive review of well-established widely available therapies and novel targeted drugs.

Keywords: chronic skin disease; inflammation; psoriasis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Clinical manifestations of psoriasis. (A,B) Psoriasis vulgaris presents with erythematous scaly plaques on the trunk and extensor surfaces of the limbs. (C) Generalized pustular psoriasis. (D) Pustular psoriasis localized to the soles of the feet. This variant typically affects the palms of the hands as well; hence, psoriasis pustulosa palmoplantaris. (E,F) Inverse psoriasis affects the folds of the skin (i.e., axillary, intergluteal, inframammary, and genital involvement).
Figure 1
Figure 1
Clinical manifestations of psoriasis. (A,B) Psoriasis vulgaris presents with erythematous scaly plaques on the trunk and extensor surfaces of the limbs. (C) Generalized pustular psoriasis. (D) Pustular psoriasis localized to the soles of the feet. This variant typically affects the palms of the hands as well; hence, psoriasis pustulosa palmoplantaris. (E,F) Inverse psoriasis affects the folds of the skin (i.e., axillary, intergluteal, inframammary, and genital involvement).
Figure 2
Figure 2
Erythrodermic psoriasis.
Figure 3
Figure 3
Onycholysis and oil drop changes on psoriatic nail involvement.
Figure 4
Figure 4
Histopathology of psoriasis. (A) Psoriasis vulgaris characteristically shows acanthosis, parakeratosis, and dermal inflammatory infiltrates. (B) In pustular psoriasis, acanthotic changes are accompanied by epidermal predominantly neutrophilic infiltrates, which cause pustule formation.
Figure 5
Figure 5
The pathogenesis of psoriasis.

References

    1. Christophers E. Psoriasis—Epidemiology and clinical spectrum. Clin. Exp. Dermatol. 2001;26:314–320. doi: 10.1046/j.1365-2230.2001.00832.x.
    1. Parisi R., Symmons D.P., Griffiths C.E., Ashcroft D.M. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013;133:377–385. doi: 10.1038/jid.2012.339.
    1. Gibbs S. Skin disease and socioeconomic conditions in rural Africa: Tanzania. Int. J. Dermatol. 1996;35:633–639. doi: 10.1111/j.1365-4362.1996.tb03687.x.
    1. Rachakonda T.D., Schupp C.W., Armstrong A.W. Psoriasis prevalence among adults in the united states. J. Am. Acad. Dermatol. 2014;70:512–516. doi: 10.1016/j.jaad.2013.11.013.
    1. Danielsen K., Olsen A.O., Wilsgaard T., Furberg A.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. Br. J. Dermatol. 2013;168:1303–1310. doi: 10.1111/bjd.12230.
    1. Ortonne J., Chimenti S., Luger T., Puig L., Reid F., Trueb R.M. Scalp psoriasis: European consensus on grading and treatment algorithm. J. Eur. Acad. Dermatol. Venereol. 2009;23:1435–1444. doi: 10.1111/j.1468-3083.2009.03372.x.
    1. Nestle F.O., Kaplan D.H., Barker J. Psoriasis. N. Engl. J. Med. 2009;361:496–509. doi: 10.1056/NEJMra0804595.
    1. Ko H.C., Jwa S.W., Song M., Kim M.B., Kwon K.S. Clinical course of guttate psoriasis: Long-term follow-up study. J. Dermatol. 2010;37:894–899. doi: 10.1111/j.1346-8138.2010.00871.x.
    1. Martin B.A., Chalmers R.J., Telfer N.R. How great is the risk of further psoriasis following a single episode of acute guttate psoriasis? Arch. Dermatol. 1996;132:717–718. doi: 10.1001/archderm.1996.03890300147032.
    1. Navarini A.A., Burden A.D., Capon F., Mrowietz U., Puig L., Koks S., Kingo K., Smith C., Barker J.N., Network E. European consensus statement on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017;31:1792–1799. doi: 10.1111/jdv.14386.
    1. Sommer D.M., Jenisch S., Suchan M., Christophers E., Weichenthal M. Increased prevalence of the metabolic syndrome in patients with moderate to severe psoriasis. Arch. Dermatol. Res. 2006;298:321–328. doi: 10.1007/s00403-006-0703-z.
    1. Gerdes S., Mrowietz U., Boehncke W.H. Comorbidity in psoriasis. Hautarzt. 2016;67:438–444. doi: 10.1007/s00105-016-3805-3.
    1. Ludwig R.J., Herzog C., Rostock A., Ochsendorf F.R., Zollner T.M., Thaci D., Kaufmann R., Vogl T.J., Boehncke W.H. Psoriasis: A possible risk factor for development of coronary artery calcification. Br. J. Dermatol. 2007;156:271–276. doi: 10.1111/j.1365-2133.2006.07562.x.
    1. Gelfand J.M., Dommasch E.D., Shin D.B., Azfar R.S., Kurd S.K., Wang X., Troxel A.B. The risk of stroke in patients with psoriasis. J. Investig. Dermatol. 2009;129:2411–2418. doi: 10.1038/jid.2009.112.
    1. Prodanovich S., Kirsner R.S., Kravetz J.D., Ma F., Martinez L., Federman D.G. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch. Dermatol. 2009;145:700–703. doi: 10.1001/archdermatol.2009.94.
    1. Gelfand J.M., Neimann A.L., Shin D.B., Wang X., Margolis D.J., Troxel A.B. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296:1735–1741. doi: 10.1001/jama.296.14.1735.
    1. Ahlehoff O., Gislason G.H., Charlot M., Jorgensen C.H., Lindhardsen J., Olesen J.B., Abildstrom S.Z., Skov L., Torp-Pedersen C., Hansen P.R. Psoriasis is associated with clinically significant cardiovascular risk: A danish nationwide cohort study. J. Intern. Med. 2011;270:147–157. doi: 10.1111/j.1365-2796.2010.02310.x.
    1. Kimball A.B., Guerin A., Latremouille-Viau D., Yu A.P., Gupta S., Bao Y., Mulani P. Coronary heart disease and stroke risk in patients with psoriasis: Retrospective analysis. Am. J. Med. 2010;123:350–357. doi: 10.1016/j.amjmed.2009.08.022.
    1. Stern R.S. Psoriasis is not a useful independent risk factor for cardiovascular disease. J. Investig. Dermatol. 2010;130:917–919. doi: 10.1038/jid.2009.446.
    1. Stern R.S., Huibregtse A. Very severe psoriasis is associated with increased noncardiovascular mortality but not with increased cardiovascular risk. J. Investig. Dermatol. 2011;131:1159–1166. doi: 10.1038/jid.2010.399.
    1. Armstrong E.J., Harskamp C.T., Armstrong A.W. Psoriasis and major adverse cardiovascular events: A systematic review and meta-analysis of observational studies. J. Am. Heart Assoc. 2013;2:e000062. doi: 10.1161/JAHA.113.000062.
    1. Gaeta M., Castelvecchio S., Ricci C., Pigatto P., Pellissero G., Cappato R. Role of psoriasis as independent predictor of cardiovascular disease: A meta-regression analysis. Int. J. Cardiol. 2013;168:2282–2288. doi: 10.1016/j.ijcard.2013.01.197.
    1. Gu W.J., Weng C.L., Zhao Y.T., Liu Q.H., Yin R.X. Psoriasis and risk of cardiovascular disease: A meta-analysis of cohort studies. Int. J. Cardiol. 2013;168:4992–4996. doi: 10.1016/j.ijcard.2013.07.127.
    1. Horreau C., Pouplard C., Brenaut E., Barnetche T., Misery L., Cribier B., Jullien D., Aractingi S., Aubin F., Joly P., et al. Cardiovascular morbidity and mortality in psoriasis and psoriatic arthritis: A systematic literature review. J. Eur. Acad. Dermatol. Venereol. 2013;27(Suppl. 3):12–29. doi: 10.1111/jdv.12163.
    1. Miller I.M., Ellervik C., Yazdanyar S., Jemec G.B. Meta-analysis of psoriasis, cardiovascular disease, and associated risk factors. J. Am. Acad. Dermatol. 2013;69:1014–1024. doi: 10.1016/j.jaad.2013.06.053.
    1. Pietrzak A., Bartosinska J., Chodorowska G., Szepietowski J.C., Paluszkiewicz P., Schwartz R.A. Cardiovascular aspects of psoriasis: An updated review. Int. J. Dermatol. 2013;52:153–162. doi: 10.1111/j.1365-4632.2012.05584.x.
    1. Samarasekera E.J., Neilson J.M., Warren R.B., Parnham J., Smith C.H. Incidence of cardiovascular disease in individuals with psoriasis: A systematic review and meta-analysis. J. Investig. Dermatol. 2013;133:2340–2346. doi: 10.1038/jid.2013.149.
    1. Xu T., Zhang Y.H. Association of psoriasis with stroke and myocardial infarction: Meta-analysis of cohort studies. Br. J. Dermatol. 2012;167:1345–1350. doi: 10.1111/bjd.12002.
    1. Egeberg A., Skov L., Joshi A.A., Mallbris L., Gislason G.H., Wu J.J., Rodante J., Lerman J.B., Ahlman M.A., Gelfand J.M., et al. The relationship between duration of psoriasis, vascular inflammation, and cardiovascular events. J. Am. Acad. Dermatol. 2017;77:650–656.e3. doi: 10.1016/j.jaad.2017.06.028.
    1. Mehta N.N., Yu Y., Saboury B., Foroughi N., Krishnamoorthy P., Raper A., Baer A., Antigua J., Van Voorhees A.S., Torigian D.A., et al. Systemic and vascular inflammation in patients with moderate to severe psoriasis as measured by [18f]-fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT): A pilot study. Arch. Dermatol. 2011;147:1031–1039. doi: 10.1001/archdermatol.2011.119.
    1. Joshi A.A., Lerman J.B., Aberra T.M., Afshar M., Teague H.L., Rodante J.A., Krishnamoorthy P., Ng Q., Aridi T.Z., Salahuddin T., et al. Glyca is a novel biomarker of inflammation and subclinical cardiovascular disease in psoriasis. Circ. Res. 2016;119:1242–1253. doi: 10.1161/CIRCRESAHA.116.309637.
    1. Ogdie A., Langan S., Love T., Haynes K., Shin D., Seminara N., Mehta N.N., Troxel A., Choi H., Gelfand J.M. Prevalence and treatment patterns of psoriatic arthritis in the UK. Rheumatology. 2013;52:568–575. doi: 10.1093/rheumatology/kes324.
    1. Li R., Sun J., Ren L.M., Wang H.Y., Liu W.H., Zhang X.W., Chen S., Mu R., He J., Zhao Y., et al. Epidemiology of eight common rheumatic diseases in china: A large-scale cross-sectional survey in Beijing. Rheumatology. 2012;51:721–729. doi: 10.1093/rheumatology/ker370.
    1. Carneiro J.N., Paula A.P., Martins G.A. Psoriatic arthritis in patients with psoriasis: Evaluation of clinical and epidemiological features in 133 patients followed at the university hospital of Brasilia. An. Bras. Dermatol. 2012;87:539–544. doi: 10.1590/S0365-05962012000400003.
    1. Haroon M., Kirby B., FitzGerald O. High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires. Ann. Rheum. Dis. 2013;72:736–740. doi: 10.1136/annrheumdis-2012-201706.
    1. Henes J.C., Ziupa E., Eisfelder M., Adamczyk A., Knaudt B., Jacobs F., Lux J., Schanz S., Fierlbeck G., Spira D., et al. High prevalence of psoriatic arthritis in dermatological patients with psoriasis: A cross-sectional study. Rheumatol. Int. 2014;34:227–234. doi: 10.1007/s00296-013-2876-z.
    1. Mease P.J., Gladman D.D., Papp K.A., Khraishi M.M., Thaci D., Behrens F., Northington R., Fuiman J., Bananis E., Boggs R., et al. Prevalence of rheumatologist-diagnosed psoriatic arthritis in patients with psoriasis in European/North American dermatology clinics. J. Am. Acad. Dermatol. 2013;69:729–735. doi: 10.1016/j.jaad.2013.07.023.
    1. Reich K., Kruger K., Mossner R., Augustin M. Epidemiology and clinical pattern of psoriatic arthritis in germany: A prospective interdisciplinary epidemiological study of 1511 patients with Plaque-type psoriasis. Br. J. Dermatol. 2009;160:1040–1047. doi: 10.1111/j.1365-2133.2008.09023.x.
    1. Villani A.P., Rouzaud M., Sevrain M., Barnetche T., Paul C., Richard M.A., Beylot-Barry M., Misery L., Joly P., Le Maitre M., et al. Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: Systematic review and meta-analysis. J. Am. Acad. Dermatol. 2015;73:242–248. doi: 10.1016/j.jaad.2015.05.001.
    1. Stoll M.L., Zurakowski D., Nigrovic L.E., Nichols D.P., Sundel R.P., Nigrovic P.A. Patients with juvenile psoriatic arthritis comprise two distinct populations. Arthritis Rheum. 2006;54:3564–3572. doi: 10.1002/art.22173.
    1. Salomon J., Szepietowski J.C., Proniewicz A. Psoriatic nails: A prospective clinical study. J. Cutan. Med. Surg. 2003;7:317–321. doi: 10.1007/s10227-002-0143-0.
    1. Pasch M.C. Nail psoriasis: A review of treatment options. Drugs. 2016;76:675–705. doi: 10.1007/s40265-016-0564-5.
    1. Langenbruch A., Radtke M.A., Krensel M., Jacobi A., Reich K., Augustin M. Nail involvement as a predictor of concomitant psoriatic arthritis in patients with psoriasis. Br. J. Dermatol. 2014;171:1123–1128. doi: 10.1111/bjd.13272.
    1. Maejima H., Taniguchi T., Watarai A., Katsuoka K. Evaluation of nail disease in psoriatic arthritis by using a modified nail psoriasis severity score index. Int. J. Dermatol. 2010;49:901–906. doi: 10.1111/j.1365-4632.2009.04452.x.
    1. Ellinghaus D., Ellinghaus E., Nair R.P., Stuart P.E., Esko T., Metspalu A., Debrus S., Raelson J.V., Tejasvi T., Belouchi M., et al. Combined analysis of genome-wide association studies for crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 2012;90:636–647. doi: 10.1016/j.ajhg.2012.02.020.
    1. Wellcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911.
    1. Yeung H., Takeshita J., Mehta N.N., Kimmel S.E., Ogdie A., Margolis D.J., Shin D.B., Attor R., Troxel A.B., Gelfand J.M. Psoriasis severity and the prevalence of major medical comorbidity: A population-based study. JAMA Dermatol. 2013;149:1173–1179. doi: 10.1001/jamadermatol.2013.5015.
    1. Wan J., Wang S., Haynes K., Denburg M.R., Shin D.B., Gelfand J.M. Risk of moderate to advanced kidney disease in patients with psoriasis: Population based cohort study. BMJ. 2013;347:f5961. doi: 10.1136/bmj.f5961.
    1. Rapp S.R., Feldman S.R., Exum M.L., Fleischer A.B., Jr., Reboussin D.M. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol. 1999;41:401–407. doi: 10.1016/S0190-9622(99)70112-X.
    1. Szepietowski J.C., Reich A. Pruritus in psoriasis: An update. Eur. J. Pain. 2016;20:41–46. doi: 10.1002/ejp.768.
    1. Fleming P., Bai J.W., Pratt M., Sibbald C., Lynde C., Gulliver W.P. The prevalence of anxiety in patients with psoriasis: A systematic review of observational studies and clinical trials. J. Eur. Acad. Dermatol. Venereol. 2017;31:798–807. doi: 10.1111/jdv.13891.
    1. Sampogna F., Tabolli S., Abeni D. Living with psoriasis: Prevalence of shame, anger, worry, and problems in daily activities and social life. Acta Derm. Venereol. 2012;92:299–303. doi: 10.2340/00015555-1273.
    1. Di Meglio P., Villanova F., Nestle F.O. Psoriasis. Cold Spring Harb. Perspect. Med. 2014;4:6. doi: 10.1101/cshperspect.a015354.
    1. Harden J.L., Krueger J.G., Bowcock A.M. The immunogenetics of psoriasis: A comprehensive review. J. Autoimmun. 2015;64:66–73. doi: 10.1016/j.jaut.2015.07.008.
    1. Liang Y., Sarkar M.K., Tsoi L.C., Gudjonsson J.E. Psoriasis: A mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol. 2017;49:1–8. doi: 10.1016/j.coi.2017.07.007.
    1. Morizane S., Gallo R.L. Antimicrobial peptides in the pathogenesis of psoriasis. J. Dermatol. 2012;39:225–230. doi: 10.1111/j.1346-8138.2011.01483.x.
    1. Morizane S., Yamasaki K., Muhleisen B., Kotol P.F., Murakami M., Aoyama Y., Iwatsuki K., Hata T., Gallo R.L. Cathelicidin antimicrobial peptide ll-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Investig. Dermatol. 2012;132:135–143. doi: 10.1038/jid.2011.259.
    1. Nestle F.O., Conrad C., Tun-Kyi A., Homey B., Gombert M., Boyman O., Burg G., Liu Y.J., Gilliet M. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 2005;202:135–143. doi: 10.1084/jem.20050500.
    1. Gregorio J., Meller S., Conrad C., Di Nardo A., Homey B., Lauerma A., Arai N., Gallo R.L., Digiovanni J., Gilliet M. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type i interferons. J. Exp. Med. 2010;207:2921–2930. doi: 10.1084/jem.20101102.
    1. Santini S.M., Lapenta C., Donati S., Spadaro F., Belardelli F., Ferrantini M. Interferon-α-conditioned human monocytes combine a TH1-orienting attitude with the induction of autologous TH17 responses: Role of IL-23 and IL-12. PLoS ONE. 2011;6:e17364. doi: 10.1371/journal.pone.0017364.
    1. Hansel A., Gunther C., Ingwersen J., Starke J., Schmitz M., Bachmann M., Meurer M., Rieber E.P., Schakel K. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J. Allergy Clin. Immunol. 2011;127:787–794. doi: 10.1016/j.jaci.2010.12.009.
    1. Nestle F.O., Turka L.A., Nickoloff B.J. Characterization of dermal dendritic cells in psoriasis. Autostimulation of t lymphocytes and induction of th1 type cytokines. J. Clin. Investig. 1994;94:202–209. doi: 10.1172/JCI117308.
    1. Van der Fits L., Mourits S., Voerman J.S., Kant M., Boon L., Laman J.D., Cornelissen F., Mus A.M., Florencia E., Prens E.P., et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009;182:5836–5845. doi: 10.4049/jimmunol.0802999.
    1. Matsuzaki G., Umemura M. Interleukin-17 family cytokines in protective immunity against infections: Role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol. Immunol. 2018;62:1–13. doi: 10.1111/1348-0421.12560.
    1. Gaffen S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 2009;9:556–567. doi: 10.1038/nri2586.
    1. Lee J.S., Tato C.M., Joyce-Shaikh B., Gulen M.F., Cayatte C., Chen Y., Blumenschein W.M., Judo M., Ayanoglu G., McClanahan T.K., et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43:727–738. doi: 10.1016/j.immuni.2015.09.003.
    1. Leung D.Y., Travers J.B., Giorno R., Norris D.A., Skinner R., Aelion J., Kazemi L.V., Kim M.H., Trumble A.E., Kotb M., et al. Evidence for a streptococcal superantigen-driven process in acute guttate psoriasis. J. Clin. Investig. 1995;96:2106–2112. doi: 10.1172/JCI118263.
    1. Johnston A., Gudjonsson J.E., Sigmundsdottir H., Love T.J., Valdimarsson H. Peripheral blood t cell responses to keratin peptides that share sequences with streptococcal m proteins are largely restricted to skin-homing CD8+ T cells. Clin. Exp. Immunol. 2004;138:83–93. doi: 10.1111/j.1365-2249.2004.00600.x.
    1. Diluvio L., Vollmer S., Besgen P., Ellwart J.W., Chimenti S., Prinz J.C. Identical TCR beta-chain rearrangements in streptococcal angina and skin lesions of patients with psoriasis vulgaris. J. Immunol. 2006;176:7104–7111. doi: 10.4049/jimmunol.176.11.7104.
    1. Johnston A., Xing X., Wolterink L., Barnes D.H., Yin Z., Reingold L., Kahlenberg J.M., Harms P.W., Gudjonsson J.E. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol. 2017;140:109–120. doi: 10.1016/j.jaci.2016.08.056.
    1. Bissonnette R., Fuentes-Duculan J., Mashiko S., Li X., Bonifacio K.M., Cueto I., Suarez-Farinas M., Maari C., Bolduc C., Nigen S., et al. Palmoplantar pustular psoriasis (PPPP) is characterized by activation of the IL-17A pathway. J. Dermatol. Sci. 2017;85:20–26. doi: 10.1016/j.jdermsci.2016.09.019.
    1. Wilsmann-Theis D., Schnell L.M., Ralser-Isselstein V., Bieber T., Schon M.P., Huffmeier U., Mossner R. Successful treatment with interleukin-17a antagonists of generalized pustular psoriasis in patients without IL36RN mutations. J. Dermatol. 2018;45:850–854. doi: 10.1111/1346-8138.14318.
    1. Goldminz A.M., Au S.C., Kim N., Gottlieb A.B., Lizzul P.F. Nf-kappab: An essential transcription factor in psoriasis. J. Dermatol. Sci. 2013;69:89–94. doi: 10.1016/j.jdermsci.2012.11.002.
    1. Boutet M.A., Nerviani A., Gallo Afflitto G., Pitzalis C. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: The clinical importance of its divergence in skin and joints. Int. J. Mol. Sci. 2018;19:530. doi: 10.3390/ijms19020530.
    1. Sakkas L.I., Bogdanos D.P. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun. Rev. 2017;16:10–15. doi: 10.1016/j.autrev.2016.09.015.
    1. Mensah K.A., Schwarz E.M., Ritchlin C.T. Altered bone remodeling in psoriatic arthritis. Curr. Rheumatol. Rep. 2008;10:311–317. doi: 10.1007/s11926-008-0050-5.
    1. Lande R., Botti E., Jandus C., Dojcinovic D., Fanelli G., Conrad C., Chamilos G., Feldmeyer L., Marinari B., Chon S., et al. The antimicrobial peptide ll37 is a T-cell autoantigen in psoriasis. Nat. Commun. 2014;5:5621. doi: 10.1038/ncomms6621.
    1. Arakawa A., Siewert K., Stohr J., Besgen P., Kim S.M., Ruhl G., Nickel J., Vollmer S., Thomas P., Krebs S., et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J. Exp. Med. 2015;212:2203–2212. doi: 10.1084/jem.20151093.
    1. Fuentes-Duculan J., Bonifacio K.M., Hawkes J.E., Kunjravia N., Cueto I., Li X., Gonzalez J., Garcet S., Krueger J.G. Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp. Dermatol. 2017;26:1075–1082. doi: 10.1111/exd.13378.
    1. Cheung K.L., Jarrett R., Subramaniam S., Salimi M., Gutowska-Owsiak D., Chen Y.L., Hardman C., Xue L., Cerundolo V., Ogg G. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1A. J. Exp. Med. 2016;213:2399–2412. doi: 10.1084/jem.20160258.
    1. Yunusbaeva M., Valiev R., Bilalov F., Sultanova Z., Sharipova L., Yunusbayev B. Psoriasis patients demonstrate HLA-Cw*06:02 allele dosage-dependent T cell proliferation when treated with hair follicle-derived keratin 17 protein. Sci. Rep. 2018;8:6098. doi: 10.1038/s41598-018-24491-z.
    1. Farber E.M., Nall M.L., Watson W. Natural history of psoriasis in 61 twin pairs. Arch. Dermatol. 1974;109:207–211. doi: 10.1001/archderm.1974.01630020023005.
    1. Farber E.M., Nall M.L. The natural history of psoriasis in 5600 patients. Dermatologica. 1974;148:1–18. doi: 10.1159/000251595.
    1. Davidson A., Diamond B. Autoimmune diseases. N. Engl. J. Med. 2001;345:340–350. doi: 10.1056/NEJM200108023450506.
    1. Hayter S.M., Cook M.C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun. Rev. 2012;11:754–765. doi: 10.1016/j.autrev.2012.02.001.
    1. Bowcock A.M., Krueger J.G. Getting under the skin: The immunogenetics of psoriasis. Nat. Rev. Immunol. 2005;5:699–711. doi: 10.1038/nri1689.
    1. Sagoo G.S., Cork M.J., Patel R., Tazi-Ahnini R. Genome-wide studies of psoriasis susceptibility loci: A review. J. Dermatol. Sci. 2004;35:171–179. doi: 10.1016/j.jdermsci.2004.02.009.
    1. Elder J.T. Expanded genome-wide association study meta-analysis of psoriasis expands the catalog of common psoriasis-associated variants. J. Investig. Dermatol. Symp. Proc. 2018;19:S77–S78. doi: 10.1016/j.jisp.2018.09.005.
    1. Trembath R.C., Clough R.L., Rosbotham J.L., Jones A.B., Camp R.D., Frodsham A., Browne J., Barber R., Terwilliger J., Lathrop G.M., et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum. Mol. Genet. 1997;6:813–820. doi: 10.1093/hmg/6.5.813.
    1. Nair R.P., Stuart P.E., Nistor I., Hiremagalore R., Chia N.V., Jenisch S., Weichenthal M., Abecasis G.R., Lim H.W., Christophers E., et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 2006;78:827–851. doi: 10.1086/503821.
    1. Mallon E., Bunce M., Savoie H., Rowe A., Newson R., Gotch F., Bunker C.B. HLA-C and guttate psoriasis. Br. J. Dermatol. 2000;143:1177–1182. doi: 10.1046/j.1365-2133.2000.03885.x.
    1. Gudjonsson J.E., Karason A., Antonsdottir A., Runarsdottir E.H., Hauksson V.B., Upmanyu R., Gulcher J., Stefansson K., Valdimarsson H. Psoriasis patients who are homozygous for the Hla-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br. J. Dermatol. 2003;148:233–235. doi: 10.1046/j.1365-2133.2003.05115.x.
    1. Allen M.H., Ameen H., Veal C., Evans J., Ramrakha-Jones V.S., Marsland A.M., Burden A.D., Griffiths C.E., Trembath R.C., Barker J.N. The major psoriasis susceptibility locus psors1 is not a risk factor for late-onset psoriasis. J. Investig. Dermatol. 2005;124:103–106. doi: 10.1111/j.0022-202X.2004.23511.x.
    1. Berki D.M., Liu L., Choon S.E., David Burden A., Griffiths C.E.M., Navarini A.A., Tan E.S., Irvine A.D., Ranki A., Ogo T., et al. Activating card14 mutations are associated with generalized pustular psoriasis but rarely account for familial recurrence in psoriasis vulgaris. J. Investig. Dermatol. 2015;135:2964–2970. doi: 10.1038/jid.2015.288.
    1. Hwu W.L., Yang C.F., Fann C.S., Chen C.L., Tsai T.F., Chien Y.H., Chiang S.C., Chen C.H., Hung S.I., Wu J.Y., et al. Mapping of psoriasis to 17q terminus. J. Med. Genet. 2005;42:152–158. doi: 10.1136/jmg.2004.018564.
    1. Jordan C.T., Cao L., Roberson E.D., Pierson K.C., Yang C.F., Joyce C.E., Ryan C., Duan S., Helms C.A., Liu Y., et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 2012;90:784–795. doi: 10.1016/j.ajhg.2012.03.012.
    1. Tomfohrde J., Silverman A., Barnes R., Fernandez-Vina M.A., Young M., Lory D., Morris L., Wuepper K.D., Stastny P., Menter A., et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science. 1994;264:1141–1145. doi: 10.1126/science.8178173.
    1. Capon F., Novelli G., Semprini S., Clementi M., Nudo M., Vultaggio P., Mazzanti C., Gobello T., Botta A., Fabrizi G., et al. Searching for psoriasis susceptibility genes in italy: Genome scan and evidence for a new locus on chromosome 1. J. Investig. Dermatol. 1999;112:32–35. doi: 10.1046/j.1523-1747.1999.00471.x.
    1. De Cid R., Riveira-Munoz E., Zeeuwen P.L., Robarge J., Liao W., Dannhauser E.N., Giardina E., Stuart P.E., Nair R., Helms C., et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 2009;41:211–215. doi: 10.1038/ng.313.
    1. Oh I.Y., de Guzman Strong C. The molecular revolution in cutaneous biology: EDC and locus control. J. Investig. Dermatol. 2017;137:e101–e104. doi: 10.1016/j.jid.2016.03.046.
    1. Riveira-Munoz E., He S.M., Escaramis G., Stuart P.E., Huffmeier U., Lee C., Kirby B., Oka A., Giardina E., Liao W., et al. Meta-analysis confirms the LCE3C_LCE3B deletion as a risk factor for psoriasis in several ethnic groups and finds interaction with HLA-Cw6. J. Investig. Dermatol. 2011;131:1105–1109. doi: 10.1038/jid.2010.350.
    1. Elder J.T. Genome-wide association scan yields new insights into the immunopathogenesis of psoriasis. Genes Immun. 2009;10:201–209. doi: 10.1038/gene.2009.11.
    1. Tsoi L.C., Spain S.L., Ellinghaus E., Stuart P.E., Capon F., Knight J., Tejasvi T., Kang H.M., Allen M.H., Lambert S., et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat. Commun. 2015;6:7001. doi: 10.1038/ncomms8001.
    1. Yin X., Low H.Q., Wang L., Li Y., Ellinghaus E., Han J., Estivill X., Sun L., Zuo X., Shen C., et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat. Commun. 2015;6:6916. doi: 10.1038/ncomms7916.
    1. Tsoi L.C., Spain S.L., Knight J., Ellinghaus E., Stuart P.E., Capon F., Ding J., Li Y., Tejasvi T., Gudjonsson J.E., et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 2012;44:1341–1348. doi: 10.1038/ng.2467.
    1. Parham C., Chirica M., Timans J., Vaisberg E., Travis M., Cheung J., Pflanz S., Zhang R., Singh K.P., Vega F., et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 2002;168:5699–5708. doi: 10.4049/jimmunol.168.11.5699.
    1. Andres R.M., Hald A., Johansen C., Kragballe K., Iversen L. Studies of jak/stat3 expression and signalling in psoriasis identifies STAT3-SER727 phosphorylation as a modulator of transcriptional activity. Exp. Dermatol. 2013;22:323–328. doi: 10.1111/exd.12128.
    1. Di Meglio P., Di Cesare A., Laggner U., Chu C.C., Napolitano L., Villanova F., Tosi I., Capon F., Trembath R.C., Peris K., et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced TH17 effector response in humans. PLoS ONE. 2011;6:e17160. doi: 10.1371/journal.pone.0017160.
    1. Kopp T., Riedl E., Bangert C., Bowman E.P., Greisenegger E., Horowitz A., Kittler H., Blumenschein W.M., McClanahan T.K., Marbury T., et al. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature. 2015;521:222–226. doi: 10.1038/nature14175.
    1. Eken A., Singh A.K., Oukka M. Interleukin 23 in crohn’s disease. Inflamm. Bowel. Dis. 2014;20:587–595. doi: 10.1097/01.MIB.0000442014.52661.20.
    1. Ghoreschi K., Laurence A., O’Shea J.J. Selectivity and therapeutic inhibition of kinases: To be or not to be? Nat. Immunol. 2009;10:356–360. doi: 10.1038/ni.1701.
    1. Zhang F., Meng G., Strober W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 2008;9:1297–1306. doi: 10.1038/ni.1663.
    1. Craiglow B.G., Boyden L.M., Hu R., Virtanen M., Su J., Rodriguez G., McCarthy C., Luna P., Larralde M., Humphrey S., et al. CARD14-associated papulosquamous eruption: A spectrum including features of psoriasis and pityriasis rubra pilaris. J. Am. Acad. Dermatol. 2018;79:487–494. doi: 10.1016/j.jaad.2018.02.034.
    1. Lizzul P.F., Aphale A., Malaviya R., Sun Y., Masud S., Dombrovskiy V., Gottlieb A.B. Differential expression of phosphorylated NF-κB/RELA in normal and psoriatic epidermis and downregulation of NF-κB in response to treatment with etanercept. J. Investig. Dermatol. 2005;124:1275–1283. doi: 10.1111/j.0022-202X.2005.23735.x.
    1. Nair R.P., Duffin K.C., Helms C., Ding J., Stuart P.E., Goldgar D., Gudjonsson J.E., Li Y., Tejasvi T., Feng B.J., et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 2009;41:199–204. doi: 10.1038/ng.311.
    1. Stuart P.E., Nair R.P., Ellinghaus E., Ding J., Tejasvi T., Gudjonsson J.E., Li Y., Weidinger S., Eberlein B., Gieger C., et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat. Genet. 2010;42:1000–1004. doi: 10.1038/ng.693.
    1. Huffmeier U., Uebe S., Ekici A.B., Bowes J., Giardina E., Korendowych E., Juneblad K., Apel M., McManus R., Ho P., et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 2010;42:996–999. doi: 10.1038/ng.688.
    1. Marrakchi S., Guigue P., Renshaw B.R., Puel A., Pei X.Y., Fraitag S., Zribi J., Bal E., Cluzeau C., Chrabieh M., et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 2011;365:620–628. doi: 10.1056/NEJMoa1013068.
    1. Onoufriadis A., Simpson M.A., Pink A.E., Di Meglio P., Smith C.H., Pullabhatla V., Knight J., Spain S.L., Nestle F.O., Burden A.D., et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 2011;89:432–437. doi: 10.1016/j.ajhg.2011.07.022.
    1. Sugiura K. The genetic background of generalized pustular psoriasis: Il36rn mutations and card14 gain-of-function variants. J. Dermatol. Sci. 2014;74:187–192. doi: 10.1016/j.jdermsci.2014.02.006.
    1. Tian S., Krueger J.G., Li K., Jabbari A., Brodmerkel C., Lowes M.A., Suarez-Farinas M. Meta-analysis derived (mad) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE. 2012;7:e44274. doi: 10.1371/journal.pone.0044274.
    1. Ainali C., Valeyev N., Perera G., Williams A., Gudjonsson J.E., Ouzounis C.A., Nestle F.O., Tsoka S. Transcriptome classification reveals molecular subtypes in psoriasis. BMC Genom. 2012;13:472. doi: 10.1186/1471-2164-13-472.
    1. Chiricozzi A., Suarez-Farinas M., Fuentes-Duculan J., Cueto I., Li K., Tian S., Brodmerkel C., Krueger J.G. Increased expression of interleukin-17 pathway genes in nonlesional skin of moderate-to-severe psoriasis vulgaris. Br. J. Dermatol. 2016;174:136–145. doi: 10.1111/bjd.14034.
    1. Swindell W.R., Stuart P.E., Sarkar M.K., Voorhees J.J., Elder J.T., Johnston A., Gudjonsson J.E. Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era. BMC Med. Genom. 2014;7:27. doi: 10.1186/1755-8794-7-27.
    1. Grjibovski A.M., Olsen A.O., Magnus P., Harris J.R. Psoriasis in norwegian twins: Contribution of genetic and environmental effects. J. Eur. Acad. Dermatol. Venereol. 2007;21:1337–1343. doi: 10.1111/j.1468-3083.2007.02268.x.
    1. Gomez J.A., Wapinski O.L., Yang Y.W., Bureau J.F., Gopinath S., Monack D.M., Chang H.Y., Brahic M., Kirkegaard K. The nest long NCRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152:743–754. doi: 10.1016/j.cell.2013.01.015.
    1. Gupta R., Ahn R., Lai K., Mullins E., Debbaneh M., Dimon M., Arron S., Liao W. Landscape of long noncoding RNAS in psoriatic and healthy skin. J. Investig. Dermatol. 2016;136:603–609. doi: 10.1016/j.jid.2015.12.009.
    1. Sonkoly E., Bata-Csorgo Z., Pivarcsi A., Polyanka H., Kenderessy-Szabo A., Molnar G., Szentpali K., Bari L., Megyeri K., Mandi Y., et al. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J. Biol. Chem. 2005;280:24159–24167. doi: 10.1074/jbc.M501704200.
    1. Szegedi K., Sonkoly E., Nagy N., Nemeth I.B., Bata-Csorgo Z., Kemeny L., Dobozy A., Szell M. The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA, PRINS. Exp. Dermatol. 2010;19:269–278. doi: 10.1111/j.1600-0625.2010.01066.x.
    1. Tsoi L.C., Iyer M.K., Stuart P.E., Swindell W.R., Gudjonsson J.E., Tejasvi T., Sarkar M.K., Li B., Ding J., Voorhees J.J., et al. Analysis of long non-coding RNAS highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol. 2015;16:24. doi: 10.1186/s13059-014-0570-4.
    1. Wan D.C., Wang K.C. Long noncoding RNA: Significance and potential in skin biology. Cold Spring Harb. Perspect. Med. 2014;4:a015404. doi: 10.1101/cshperspect.a015404.
    1. Hawkes J.E., Nguyen G.H., Fujita M., Florell S.R., Callis Duffin K., Krueger G.G., O’Connell R.M. Micrornas in psoriasis. J. Investig. Dermatol. 2016;136:365–371. doi: 10.1038/JID.2015.409.
    1. Lovendorf M.B., Zibert J.R., Gyldenlove M., Ropke M.A., Skov L. MicroRNA-223 and MIR-143 are important systemic biomarkers for disease activity in psoriasis. J. Dermatol. Sci. 2014;75:133–139. doi: 10.1016/j.jdermsci.2014.05.005.
    1. Paek S.Y., Han L., Weiland M., Lu C.J., McKinnon K., Zhou L., Lim H.W., Elder J.T., Mi Q.S. Emerging biomarkers in psoriatic arthritis. IUBMB Life. 2015;67:923–927. doi: 10.1002/iub.1453.
    1. Xu N., Meisgen F., Butler L.M., Han G., Wang X.J., Soderberg-Naucler C., Stahle M., Pivarcsi A., Sonkoly E. MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40. J. Immunol. 2013;190:678–688. doi: 10.4049/jimmunol.1202695.
    1. Guinea-Viniegra J., Jiménez M., Schonthaler H.B., Navarro R., Delgado Y., José Concha-Garzón M., Tschachler E., Obad S., Daudén E., Wagner E.F. Targeting MIR-21 to treat psoriasis. Sci. Transl. Med. 2014;6:225re221. doi: 10.1126/scitranslmed.3008089.
    1. Joyce C.E., Zhou X., Xia J., Ryan C., Thrash B., Menter A., Zhang W., Bowcock A.M. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum. Mol. Genet. 2011;20:4025–4040. doi: 10.1093/hmg/ddr331.
    1. Zibert J.R., Lovendorf M.B., Litman T., Olsen J., Kaczkowski B., Skov L. Micrornas and potential target interactions in psoriasis. J. Dermatol. Sci. 2010;58:177–185. doi: 10.1016/j.jdermsci.2010.03.004.
    1. Wu R., Zeng J., Yuan J., Deng X., Huang Y., Chen L., Zhang P., Feng H., Liu Z., Wang Z., et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing TH1 and TH17 cell differentiation. J. Clin. Investig. 2018;128:2551–2568. doi: 10.1172/JCI97426.
    1. Lovendorf M.B., Mitsui H., Zibert J.R., Ropke M.A., Hafner M., Dyring-Andersen B., Bonefeld C.M., Krueger J.G., Skov L. Laser capture microdissection followed by next-generation sequencing identifies disease-related micrornas in psoriatic skin that reflect systemic microRNA changes in psoriasis. Exp. Dermatol. 2015;24:187–193. doi: 10.1111/exd.12604.
    1. Garcia-Rodriguez S., Arias-Santiago S., Orgaz-Molina J., Magro-Checa C., Valenzuela I., Navarro P., Naranjo-Sintes R., Sancho J., Zubiaur M. Abnormal levels of expression of plasma microRNA-33 in patients with psoriasis. Actas. Dermosifiliogr. 2014;105:497–503. doi: 10.1016/j.adengl.2014.04.003.
    1. Chatzikyriakidou A., Voulgari P.V., Georgiou I., Drosos A.A. The role of microrna-146a (miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility. Scand. J. Immunol. 2010;71:382–385. doi: 10.1111/j.1365-3083.2010.02381.x.
    1. Zhang W., Yi X., Guo S., Shi Q., Wei C., Li X., Gao L., Wang G., Gao T., Wang L., et al. A single-nucleotide polymorphism of mir-146a and psoriasis: An association and functional study. J. Cell. Mol. Med. 2014;18:2225–2234. doi: 10.1111/jcmm.12359.
    1. Xu L., Leng H., Shi X., Ji J., Fu J., Leng H. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed. Pharmacother. 2017;90:524–530. doi: 10.1016/j.biopha.2017.03.105.
    1. Primo M.N., Bak R.O., Schibler B., Mikkelsen J.G. Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes. Cytokine. 2012;60:741–748. doi: 10.1016/j.cyto.2012.07.031.
    1. Zhao M., Wang L.T., Liang G.P., Zhang P., Deng X.J., Tang Q., Zhai H.Y., Chang C.C., Su Y.W., Lu Q.J. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+ T cells of psoriasis vulgaris. Clin. Immunol. 2014;150:22–30. doi: 10.1016/j.clim.2013.10.009.
    1. Tsuru Y., Jinnin M., Ichihara A., Fujisawa A., Moriya C., Sakai K., Fukushima S., Ihn H. MiR-424 levels in hair shaft are increased in psoriatic patients. J. Dermatol. 2014;41:382–385. doi: 10.1111/1346-8138.12460.
    1. Gudjonsson J.E., Krueger G. A role for epigenetics in psoriasis: Methylated cytosine-guanine sites differentiate lesional from nonlesional skin and from normal skin. J. Investig. Dermatol. 2012;132:506–508. doi: 10.1038/jid.2011.364.
    1. Roberson E.D., Liu Y., Ryan C., Joyce C.E., Duan S., Cao L., Martin A., Liao W., Menter A., Bowcock A.M. A subset of methylated CPG sites differentiate psoriatic from normal skin. J. Investig. Dermatol. 2012;132:583–592. doi: 10.1038/jid.2011.348.
    1. Byrd A.L., Belkaid Y., Segre J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018;16:143–155. doi: 10.1038/nrmicro.2017.157.
    1. Fahlen A., Engstrand L., Baker B.S., Powles A., Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch. Dermatol. Res. 2012;304:15–22. doi: 10.1007/s00403-011-1189-x.
    1. Miyoshi J., Chang E.B. The gut microbiota and inflammatory bowel diseases. Transl. Res. 2017;179:38–48. doi: 10.1016/j.trsl.2016.06.002.
    1. Gao Z., Tseng C.H., Strober B.E., Pei Z., Blaser M.J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE. 2008;3:e2719. doi: 10.1371/journal.pone.0002719.
    1. Alekseyenko A.V., Perez-Perez G.I., De Souza A., Strober B., Gao Z., Bihan M., Li K., Methe B.A., Blaser M.J. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1:31. doi: 10.1186/2049-2618-1-31.
    1. Fry L., Baker B.S. Triggering psoriasis: The role of infections and medications. Clin. Dermatol. 2007;25:606–615. doi: 10.1016/j.clindermatol.2007.08.015.
    1. Takemoto A., Cho O., Morohoshi Y., Sugita T., Muto M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J. Dermatol. 2015;42:166–170. doi: 10.1111/1346-8138.12739.
    1. Statnikov A., Alekseyenko A.V., Li Z., Henaff M., Perez-Perez G.I., Blaser M.J., Aliferis C.F. Microbiomic signatures of psoriasis: Feasibility and methodology comparison. Sci. Rep. 2013;3:2620. doi: 10.1038/srep02620.
    1. Gao Z., Tseng C.H., Pei Z., Blaser M.J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. USA. 2007;104:2927–2932. doi: 10.1073/pnas.0607077104.
    1. Mrowietz U., Kragballe K., Reich K., Spuls P., Griffiths C.E., Nast A., Franke J., Antoniou C., Arenberger P., Balieva F., et al. Definition of treatment goals for moderate to severe psoriasis: A European consensus. Arch. Dermatol. Res. 2011;303:1–10. doi: 10.1007/s00403-010-1080-1.
    1. Hone S.W., Donnelly M.J., Powell F., Blayney A.W. Clearance of recalcitrant psoriasis after tonsillectomy. Clin. Otolaryngol. Allied Sci. 1996;21:546–547. doi: 10.1111/j.1365-2273.1996.tb01108.x.
    1. McMillin B.D., Maddern B.R., Graham W.R. A role for tonsillectomy in the treatment of psoriasis? Ear Nose Throat. J. 1999;78:155–158. doi: 10.1016/S0194-5998(97)80494-9.
    1. Rachakonda T.D., Dhillon J.S., Florek A.G., Armstrong A.W. Effect of tonsillectomy on psoriasis: A systematic review. J. Am. Acad. Dermatol. 2015;72:261–275. doi: 10.1016/j.jaad.2014.10.013.
    1. Thorleifsdottir R.H., Sigurdardottir S.L., Sigurgeirsson B., Olafsson J.H., Petersen H., Sigurdsson M.I., Gudjonsson J.E., Johnston A., Valdimarsson H. HLA-Cw6 homozygosity in plaque psoriasis is associated with streptococcal throat infections and pronounced improvement after tonsillectomy: A prospective case series. J. Am. Acad. Dermatol. 2016;75:889–896. doi: 10.1016/j.jaad.2016.06.061.
    1. Thorleifsdottir R.H., Sigurdardottir S.L., Sigurgeirsson B., Olafsson J.H., Sigurdsson M.I., Petersen H., Arnadottir S., Gudjonsson J.E., Johnston A., Valdimarsson H. Improvement of psoriasis after tonsillectomy is associated with a decrease in the frequency of circulating T cells that recognize streptococcal determinants and homologous skin determinants. J. Immunol. 2012;188:5160–5165. doi: 10.4049/jimmunol.1102834.
    1. Thorleifsdottir R.H., Sigurdardottir S.L., Sigurgeirsson B., Olafsson J.H., Sigurdsson M.I., Petersen H., Gudjonsson J.E., Johnston A., Valdimarsson H. Patient-reported outcomes and clinical response in patients with moderate-to-severe plaque psoriasis treated with tonsillectomy: A randomized controlled trial. Acta Derm. Venereol. 2017;97:340–345. doi: 10.2340/00015555-2562.
    1. Revicki D., Willian M.K., Saurat J.H., Papp K.A., Ortonne J.P., Sexton C., Camez A. Impact of adalimumab treatment on health-related quality of life and other patient-reported outcomes: Results from a 16-week randomized controlled trial in patients with moderate to severe plaque psoriasis. Br. J. Dermatol. 2008;158:549–557. doi: 10.1111/j.1365-2133.2007.08236.x.
    1. Saurat J.H., Stingl G., Dubertret L., Papp K., Langley R.G., Ortonne J.P., Unnebrink K., Kaul M., Camez A., Investigators C.S. Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. Methotrexate vs. Placebo in patients with psoriasis (champion) Br. J. Dermatol. 2008;158:558–566. doi: 10.1111/j.1365-2133.2007.08315.x.
    1. Lindqvist T., Salah L.A., Gillstedt M., Wennberg A.M., Osmancevic A. Methotrexate management in psoriasis: Are we following the guidelines? Acta Derm. Venereol. 2018;98:449–451. doi: 10.2340/00015555-2857.
    1. Coates L.C., Helliwell P.S. Methotrexate efficacy in the tight control in psoriatic arthritis study. J. Rheumatol. 2016;43:356–361. doi: 10.3899/jrheum.150614.
    1. West J., Ogston S., Berg J., Palmer C., Fleming C., Kumar V., Foerster J. Hla-cw6-positive patients with psoriasis show improved response to methotrexate treatment. Clin. Exp. Dermatol. 2017;42:651–655. doi: 10.1111/ced.13100.
    1. Ho V.C., Griffiths C.E., Berth-Jones J., Papp K.A., Vanaclocha F., Dauden E., Beard A., Puvanarajan L., Paul C. Intermittent short courses of cyclosporine microemulsion for the long-term management of psoriasis: A 2-year cohort study. J. Am. Acad. Dermatol. 2001;44:643–651. doi: 10.1067/mjd.2001.112400.
    1. Brand N., Petkovich M., Krust A., Chambon P., de The H., Marchio A., Tiollais P., Dejean A. Identification of a second human retinoic acid receptor. Nature. 1988;332:850–853. doi: 10.1038/332850a0.
    1. Harper R.A. Specificity in the synergism between retinoic acid and EGF on the growth of adult human skin fibroblasts. Exp. Cell Res. 1988;178:254–263. doi: 10.1016/0014-4827(88)90396-5.
    1. Lee J.H., Youn J.I., Kim T.Y., Choi J.H., Park C.J., Choe Y.B., Song H.J., Kim N.I., Kim K.J., Lee J.H., et al. A multicenter, randomized, open-label pilot trial assessing the efficacy and safety of etanercept 50 mg twice weekly followed by etanercept 25 mg twice weekly, the combination of etanercept 25 mg twice weekly and acitretin, and acitretin alone in patients with moderate to severe psoriasis. BMC Dermatol. 2016;16:11.
    1. Gesser B., Johansen C., Rasmussen M.K., Funding A.T., Otkjaer K., Kjellerup R.B., Kragballe K., Iversen L. Dimethylfumarate specifically inhibits the mitogen and stress-activated kinases 1 and 2 (MSK1/2): Possible role for its anti-psoriatic effect. J. Investig. Dermatol. 2007;127:2129–2137. doi: 10.1038/sj.jid.5700859.
    1. Lehmann J.C., Listopad J.J., Rentzsch C.U., Igney F.H., von Bonin A., Hennekes H.H., Asadullah K., Docke W.D. Dimethylfumarate induces immunosuppression via glutathione depletion and subsequent induction of heme oxygenase 1. J. Investig. Dermatol. 2007;127:835–845. doi: 10.1038/sj.jid.5700686.
    1. Gillard G.O., Collette B., Anderson J., Chao J., Scannevin R.H., Huss D.J., Fontenot J.D. Dmf, but not other fumarates, inhibits NF-κB activity in vitro in an NRF2-independent manner. J. Neuroimmunol. 2015;283:74–85. doi: 10.1016/j.jneuroim.2015.04.006.
    1. Oehrl S., Olaru F., Kunze A., Maas M., Pezer S., Schmitz M., Schakel K. Controlling the pro-inflammatory function of 6-sulfo LacNAc (slan) dendritic cells with dimethylfumarate. J. Dermatol. Sci. 2017;87:278–284. doi: 10.1016/j.jdermsci.2017.06.016.
    1. Reich K., Thaci D., Mrowietz U., Kamps A., Neureither M., Luger T. Efficacy and safety of fumaric acid esters in the long-term treatment of psoriasis—A retrospective study (future) J. Dtsch. Dermatol. Ges. 2009;7:603–611. doi: 10.1111/j.1610-0387.2009.07120.x.
    1. Anstey A.V. Fumaric acid esters in the treatment of psoriasis. Br. J. Dermatol. 2010;162:237–238. doi: 10.1111/j.1365-2133.2009.09624.x.
    1. Carboni I., De Felice C., De Simoni I., Soda R., Chimenti S. Fumaric acid esters in the treatment of psoriasis: An italian experience. J. Dermatol. Treat. 2004;15:23–26. doi: 10.1080/09546630310019346.
    1. Heelan K., Markham T. Fumaric acid esters as a suitable first-line treatment for severe psoriasis: An irish experience. Clin. Exp. Dermatol. 2012;37:793–795. doi: 10.1111/j.1365-2230.2012.04351.x.
    1. Kokelj F., Plozzer C., Avian A., Trevisan G. Fumaric acid and its derivatives in the treatment of psoriasis vulgaris: Our experience in forty-one patients. Acta Dermatovenerol. Croat. 2009;17:170–175.
    1. Agency E.M. Assessment Report: Skilarence. European Medicines Agency; London, UK: 2017.
    1. Altmeyer P.J., Matthes U., Pawlak F., Hoffmann K., Frosch P.J., Ruppert P., Wassilew S.W., Horn T., Kreysel H.W., Lutz G., et al. Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients. J. Am. Acad. Dermatol. 1994;30:977–981. doi: 10.1016/S0190-9622(94)70121-0.
    1. Fallah Arani S., Neumann H., Hop W.C., Thio H.B. Fumarates vs. Methotrexate in moderate to severe chronic plaque psoriasis: A multicentre prospective randomized controlled clinical trial. Br. J. Dermatol. 2011;164:855–861. doi: 10.1111/j.1365-2133.2010.10195.x.
    1. Gollnick H., Altmeyer P., Kaufmann R., Ring J., Christophers E., Pavel S., Ziegler J. Topical calcipotriol plus oral fumaric acid is more effective and faster acting than oral fumaric acid monotherapy in the treatment of severe chronic plaque psoriasis vulgaris. Dermatology. 2002;205:46–53. doi: 10.1159/000063148.
    1. Nieboer C., de Hoop D., Langendijk P.N., van Loenen A.C., Gubbels J. Fumaric acid therapy in psoriasis: A double-blind comparison between fumaric acid compound therapy and monotherapy with dimethylfumaric acid ester. Dermatologica. 1990;181:33–37. doi: 10.1159/000247856.
    1. Nugteren-Huying W.M., van der Schroeff J.G., Hermans J., Suurmond D. Fumaric acid therapy for psoriasis: A randomized, double-blind, placebo-controlled study. J. Am. Acad. Dermatol. 1990;22:311–312. doi: 10.1016/S0190-9622(08)80766-9.
    1. Schafer P.H., Parton A., Gandhi A.K., Capone L., Adams M., Wu L., Bartlett J.B., Loveland M.A., Gilhar A., Cheung Y.F., et al. Apremilast, a camp phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br. J. Pharmacol. 2010;159:842–855. doi: 10.1111/j.1476-5381.2009.00559.x.
    1. Oehrl S., Prakash H., Ebling A., Trenkler N., Wolbing P., Kunze A., Dobel T., Schmitz M., Enk A., Schakel K. The phosphodiesterase 4 inhibitor apremilast inhibits th1 but promotes th17 responses induced by 6-sulfo LacNAc (slan) dendritic cells. J. Dermatol. Sci. 2017;87:110–115. doi: 10.1016/j.jdermsci.2017.04.005.
    1. Papp K., Reich K., Leonardi C.L., Kircik L., Chimenti S., Langley R.G., Hu C., Stevens R.M., Day R.M., Gordon K.B., et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (efficacy and safety trial evaluating the effects of apremilast in psoriasis [esteem] 1) J. Am. Acad. Dermatol. 2015;73:37–49. doi: 10.1016/j.jaad.2015.03.049.
    1. Bissonnette R., Haydey R., Rosoph L.A., Lynde C.W., Bukhalo M., Fowler J.F., Delorme I., Gagne-Henley A., Gooderham M., Poulin Y., et al. Apremilast for the treatment of moderate-to-severe palmoplantar psoriasis: Results from a double-blind, placebo-controlled, randomized study. J. Eur. Acad. Dermatol. Venereol. 2018;32:403–410. doi: 10.1111/jdv.14647.
    1. Rich P., Gooderham M., Bachelez H., Goncalves J., Day R.M., Chen R., Crowley J. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with difficult-to-treat nail and scalp psoriasis: Results of 2 phase iii randomized, controlled trials (ESTEEM 1 and ESTEEM 2) J. Am. Acad. Dermatol. 2016;74:134–142. doi: 10.1016/j.jaad.2015.09.001.
    1. Lucka T.C., Pathirana D., Sammain A., Bachmann F., Rosumeck S., Erdmann R., Schmitt J., Orawa H., Rzany B., Nast A. Efficacy of systemic therapies for moderate-to-severe psoriasis: A systematic review and meta-analysis of long-term treatment. J. Eur. Acad. Dermatol. Venereol. 2012;26:1331–1344. doi: 10.1111/j.1468-3083.2012.04492.x.
    1. Pasut G. Pegylation of biological molecules and potential benefits: Pharmacological properties of certolizumab pegol. BioDrugs. 2014;28(Suppl. 1):S15–S23. doi: 10.1007/s40259-013-0064-z.
    1. Kimball A.B., Gordon K.B., Fakharzadeh S., Yeilding N., Szapary P.O., Schenkel B., Guzzo C., Li S., Papp K.A. Long-term efficacy of ustekinumab in patients with moderate-to-severe psoriasis: Results from the phoenix 1 trial through up to 3 years. Br. J. Dermatol. 2012;166:861–872. doi: 10.1111/j.1365-2133.2012.10901.x.
    1. Gniadecki R., Bang B., Bryld L.E., Iversen L., Lasthein S., Skov L. Comparison of long-term drug survival and safety of biologic agents in patients with psoriasis vulgaris. Br. J. Dermatol. 2015;172:244–252. doi: 10.1111/bjd.13343.
    1. Van den Reek J.M., Zweegers J., Kievit W., Otero M.E., van Lumig P.P., Driessen R.J., Ossenkoppele P.M., Njoo M.D., Mommers J.M., Koetsier M.I., et al. ‘Happy’ drug survival of adalimumab, etanercept and ustekinumab in psoriasis in daily practice care: Results from the BioCAPTURE network. Br. J. Dermatol. 2014;171:1189–1196. doi: 10.1111/bjd.13087.
    1. Warren R.B., Smith C.H., Yiu Z.Z.N., Ashcroft D.M., Barker J., Burden A.D., Lunt M., McElhone K., Ormerod A.D., Owen C.M., et al. Differential drug survival of biologic therapies for the treatment of psoriasis: A prospective observational cohort study from the British association of dermatologists biologic interventions register (Badbir) J. Investig. Dermatol. 2015;135:2632–2640. doi: 10.1038/jid.2015.208.
    1. Lynch M., Roche L., Horgan M., Ahmad K., Hackett C., Ramsay B. Peritoneal tuberculosis in the setting of ustekinumab treatment for psoriasis. JAAD Case Rep. 2017;3:230–232. doi: 10.1016/j.jdcr.2017.02.001.
    1. Tsai T.F., Ho J.C., Song M., Szapary P., Guzzo C., Shen Y.K., Li S., Kim K.J., Kim T.Y., Choi J.H., et al. Efficacy and safety of ustekinumab for the treatment of moderate-to-severe psoriasis: A phase III, randomized, placebo-controlled trial in Taiwanese and Korean patients (PEARL) J. Dermatol. Sci. 2011;63:154–163. doi: 10.1016/j.jdermsci.2011.05.005.
    1. Kulig P., Musiol S., Freiberger S.N., Schreiner B., Gyulveszi G., Russo G., Pantelyushin S., Kishihara K., Alessandrini F., Kundig T., et al. IL-12 protects from psoriasiform skin inflammation. Nat. Commun. 2016;7:13466. doi: 10.1038/ncomms13466.
    1. Blauvelt A., Papp K.A., Griffiths C.E., Randazzo B., Wasfi Y., Shen Y.K., Li S., Kimball A.B. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: Results from the phase iii, double-blinded, placebo- and active comparator-controlled voyage 1 trial. J. Am. Acad. Dermatol. 2017;76:405–417.
    1. Gordon K.B., Duffin K.C., Bissonnette R., Prinz J.C., Wasfi Y., Li S., Shen Y.K., Szapary P., Randazzo B., Reich K. A phase 2 trial of guselkumab versus adalimumab for plaque psoriasis. N. Engl. J. Med. 2015;373:136–144. doi: 10.1056/NEJMoa1501646.
    1. Reich K., Papp K.A., Blauvelt A., Tyring S.K., Sinclair R., Thaci D., Nograles K., Mehta A., Cichanowitz N., Li Q., et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (resurface 1 and resurface 2): Results from two randomised controlled, phase 3 trials. Lancet. 2017;390:276–288. doi: 10.1016/S0140-6736(17)31279-5.
    1. Papp K., Thaci D., Reich K., Riedl E., Langley R.G., Krueger J.G., Gottlieb A.B., Nakagawa H., Bowman E.P., Mehta A., et al. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIB randomized placebo-controlled trial. Br. J. Dermatol. 2015;173:930–939. doi: 10.1111/bjd.13932.
    1. Papp K.A., Blauvelt A., Bukhalo M., Gooderham M., Krueger J.G., Lacour J.P., Menter A., Philipp S., Sofen H., Tyring S., et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N. Engl. J. Med. 2017;376:1551–1560. doi: 10.1056/NEJMoa1607017.
    1. Langley R.G., Elewski B.E., Lebwohl M., Reich K., Griffiths C.E., Papp K., Puig L., Nakagawa H., Spelman L., Sigurgeirsson B., et al. Secukinumab in plaque psoriasis—Results of two phase 3 trials. N. Engl. J. Med. 2014;371:326–338. doi: 10.1056/NEJMoa1314258.
    1. Thaci D., Blauvelt A., Reich K., Tsai T.F., Vanaclocha F., Kingo K., Ziv M., Pinter A., Hugot S., You R., et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: Clear, a randomized controlled trial. J. Am. Acad. Dermatol. 2015;73:400–409. doi: 10.1016/j.jaad.2015.05.013.
    1. Blauvelt A., Reich K., Tsai T.F., Tyring S., Vanaclocha F., Kingo K., Ziv M., Pinter A., Vender R., Hugot S., et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: Results from the clear study. J. Am. Acad. Dermatol. 2017;76:60–69.e9. doi: 10.1016/j.jaad.2016.08.008.
    1. Gordon K.B., Colombel J.F., Hardin D.S. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N. Engl. J. Med. 2016;375:2102. doi: 10.1056/NEJMoa1512711.
    1. Papp K.A., Reich K., Paul C., Blauvelt A., Baran W., Bolduc C., Toth D., Langley R.G., Cather J., Gottlieb A.B., et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br. J. Dermatol. 2016;175:273–286. doi: 10.1111/bjd.14493.
    1. Puig L. Brodalumab: The first anti-IL-17 receptor agent for psoriasis. Drugs Today. 2017;53:283–297. doi: 10.1358/dot.2017.53.5.2613690.
    1. Bagel J., Duffin K.C., Moore A., Ferris L.K., Siu K., Steadman J., Kianifard F., Nyirady J., Lebwohl M. The effect of secukinumab on moderate-to-severe scalp psoriasis: Results of a 24-week, randomized, double-blind, placebo-controlled phase 3b study. J. Am. Acad. Dermatol. 2017;77:667–674. doi: 10.1016/j.jaad.2017.05.033.
    1. Cantini F., Nannini C., Niccoli L., Petrone L., Ippolito G., Goletti D. Risk of tuberculosis reactivation in patients with rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis receiving non-anti-TNF-targeted biologics. Mediat. Inflamm. 2017;2017:8909834. doi: 10.1155/2017/8909834.
    1. National Psoriasis Foundation. [(accessed on 2 October 2018)]; Available online: .

Source: PubMed

3
Prenumerera