Effect of metformin on the survival of patients with ALL who express high levels of the ABCB1 drug resistance gene

Christian Ramos-Peñafiel, Irma Olarte-Carrillo, Rafael Cerón-Maldonado, Etta Rozen-Fuller, Juan Julio Kassack-Ipiña, Guillermo Meléndez-Mier, Juan Collazo-Jaloma, Adolfo Martínez-Tovar, Christian Ramos-Peñafiel, Irma Olarte-Carrillo, Rafael Cerón-Maldonado, Etta Rozen-Fuller, Juan Julio Kassack-Ipiña, Guillermo Meléndez-Mier, Juan Collazo-Jaloma, Adolfo Martínez-Tovar

Abstract

Background: In acute lymphoblastic leukemia (ALL), high ABCB1 gene expression has been associated with treatment resistance, which affects patient prognosis. Many preclinical reports and retrospective population studies have shown an anti-cancer effect of metformin. Therefore, the objective of this study was to assess the effect of metformin on the treatment regimen in patients with ALL who exhibited high levels of ABCB1 gene expression and to determine its impact on overall survival.

Methods: A total of 102 patients with ALL were recruited; one group (n = 26) received metformin, and the other received chemotherapy (n = 76). Measurement of ABCB1 transcript expression was performed using qRT-PCR prior to treatment initiation. Survival analysis was performed using Kaplan-Meier curves. The impact of both the type of treatment and the level of expression on the response (remission or relapse) was analyzed by calculating the odds ratio.

Results: The survival of patients with high ABCB1 expression was lower than those with low or absent ABCB1 gene expression (p = 0.030). In the individual analysis, we identified a benefit to adding metformin in the group of patients with high ABCB1 gene expression (p = 0.025). In the metformin user group, the drug acted as a protective factor against both therapeutic failure (odds ratio [OR] 0.07, 95% confidence interval [CI] 0.0037-1.53) and early relapse (OR 0.05, 95% CI 0.0028-1.153).

Conclusion: The combined use of metformin with chemotherapy is effective in patients with elevated levels of ABCB1 gene expression. Trial registration NCT 03118128: NCT.

Trial registration: ClinicalTrials.gov NCT03118128.

Keywords: ATP binding cassette subfamily B member 1 (ABCB1); Acute lymphoblastic leukemia (ALL); Quantitative real-time polymerase chain reaction (qRT-PCR).

Figures

Fig. 1
Fig. 1
Treatment scheme used in the two ALL patient treatment groups
Fig. 2
Fig. 2
Global survival (OS) in patients with ALL expressing the ABCB1 gene. OS at 60 months in patients expressing the ABCB1 gene was analyzed. Patients with high levels of ABCB1 gene expression had an OS of 41.5% (19/46) in patients with ALL; patients with low or negative ABCB1 expression had OS values of 70% (14/20) and 69.5% (25/36), respectively (p ≤ 0.030, log-rank test)
Fig. 3
Fig. 3
Global survival (OS) in patients with ALL treated with metformin (metformin users and metformin non-users). OS at 60 months in patients treated with metformin was analyzed, and no significant differences were found between the two groups (p = 0.251, 95% CI)
Fig. 4
Fig. 4
Global survival (OS) in patients with metformin-treated ALL (metformin users) and ALL without metformin treatment (metformin non-users) with elevated levels of ABCB1 gene expression. OS at 60 months in Metformin-treated patients and high levels of ABCB1 expression was analyzed, and metformin had a protective survival benefit (p = 0.025, 95% CI)
Fig. 5
Fig. 5
Global survival (OS) in patients with metformin-treated ALL (metformin users) and ALL without metformin treatment (metformin non-users) with low ABCB1 gene expression levels. No significant changes were observed in OS in the patients with low ABCB1 gene expression levels (p = 0.046, 95% CI)
Fig. 6
Fig. 6
Global survival (OS) in patients with metformin-treated ALL (metformin users) and ALL without metformin treatment (metformin non-users) with negative ABCB1 gene expression levels. No significant changes were observed in OS in the patients with low ABCB1 gene expression levels (p = 0.048, 95% CI)

References

    1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide; sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359–386. doi: 10.1002/ijc.29210.
    1. Bray F, Piñeros M. Cancer patterns, trend and projections in Latin America and the caribbean: a global context. Salud Publica Mex. 2016;58(2):104–117. doi: 10.21149/spm.v58i2.7779.
    1. Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16(1):3–10. doi: 10.2174/138161210789941847.
    1. Wong AH, Deng CX. Precision medicine for personalized cancer therapy. Int J Biol Sci. 2015;11(12):1410–1412. doi: 10.7150/ijbs.14154.
    1. Howard DH, Chernew ME, Abdelgawad T, Smith GL, Sollano J, Grabowski DC. New anticancer drugs associated with large increases in costs and life expectancy. Health Aff (Millwood). 2016;35(9):1581–1587. doi: 10.1377/hlthaff.2016.0286.
    1. Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown ML. Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst. 2011;103(2):117–128. doi: 10.1093/jnci/djq495.
    1. Linton KJ. Structure and function of ABC transporters. Physiology. 2007;22:122–130. doi: 10.1152/physiol.00046.2006.
    1. El-Awady R, Saleh E, Hashim A, et al. The role of eukaryotic and prokaryotic abc transporter family in failure of chemotherapy. Front Pharmacol. 2017;10(7):535.
    1. Joshi AA, Vaidya SS, St-Pierre MV, et al. Placental ABC transporters: biological impact and pharmaceutical significance. Pharm Res. 2016;33(12):2847–2878. doi: 10.1007/s11095-016-2028-8.
    1. Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett. 2016;370(1):153–164. doi: 10.1016/j.canlet.2015.10.010.
    1. Wijdeven RH, Pang B, Assaraf YG, Neefjes J. Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resist Updat. 2016;28:65–81. doi: 10.1016/j.drup.2016.07.001.
    1. Fletcher JL, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Update. 2016;26:1–9. doi: 10.1016/j.drup.2016.03.001.
    1. Fukuda Y, Lian S, Schuetz JD. Leukemia and ABC transporters. Adv Cancer Res. 2015;125:171–196. doi: 10.1016/bs.acr.2014.10.006.
    1. Jonge-Peeters SD, Kuipers F, deVries EG, Vellenga E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol. 2007;62(3):214–226. doi: 10.1016/j.critrevonc.2007.02.003.
    1. Shaffer BC, Gillet JP, Patel C, Baer MR, Bates SE, Gottesman MM. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist Updat. 2012;15(1–2):62–69. doi: 10.1016/j.drup.2012.02.001.
    1. Olarte Carrillo I, Ramos Peñafiel C, Miranda Peralta E, et al. Clinical significance of the ABCB1 and ABCG2 gene expression levels in acute lymphoblastic leukemia. Hematology. 2017;14:1–6.
    1. Leclerc GM, Leclerc GJ, Kuznetsov JN, De Salvo J, Barredo JC. Metformin induces apoptosis through AMPK-dependent inhibition of UPR signaling in ALL lymphoblasts. PLoS ONE. 2013;8:e74420. doi: 10.1371/journal.pone.0074420.
    1. Martinez VL, Smith S, Toban N, Bazile M, Aloyz R. Resistance to Dasatinib in primary chronic lymphocytic leukemia lymphocytes involves AMPK-mediated energetic re-programming. Oncotarget. 2013;4:2550–2566.
    1. Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW. Metformin inhibits P-glycoprotein expression via the NF-k B pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol. 2011;162(5):1096–1108. doi: 10.1111/j.1476-5381.2010.01101.x.
    1. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348:607–614. doi: 10.1042/bj3480607.
    1. Scotland S, Saland E, Skuli N, de Toni F. Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells. Leukemia. 2013;27:2129–2138. doi: 10.1038/leu.2013.107.
    1. Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015;6:16832–16847.
    1. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–1305. doi: 10.1136/bmj.38415.708634.F7.
    1. Lei Y, Yi Y, Liu Y, Liu X, Keller ET, Qian CN, Zhang J, Lu Y. Metformin targets multiple signaling pathways in cancer. Chin J Cancer. 2017;36(1):17. doi: 10.1186/s40880-017-0184-9.
    1. Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016;78(1):13–26. doi: 10.1007/s00280-016-3037-3.
    1. Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 2011;71(9):3196–3201. doi: 10.1158/0008-5472.CAN-10-3471.
    1. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507–7511. doi: 10.1158/0008-5472.CAN-09-2994.
    1. Peng M, Darko KO, Tao T, et al. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev. 2017;54:24–33. doi: 10.1016/j.ctrv.2017.01.005.
    1. Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res. 2017;5(1):9–16. doi: 10.1158/2326-6066.CIR-16-0103.
    1. Gadducci A, Biglia N, Tana R, Cosio S, Gallo M. Metformin use and gynecological cancers: a novel treatment option emerging from drug repositioning. Crit Rev Oncol Hematol. 2016;105:73–83. doi: 10.1016/j.critrevonc.2016.06.006.
    1. Shi R, Lin J, Gong Y, et al. The antileukemia effect of metforminin the Philadelphia chromosome-positive leukemia cell line and patient primary leukemia cell. Anticancer Drugs. 2015;26(9):913–992. doi: 10.1097/CAD.0000000000000266.
    1. Wang F, Liu Z, Zeng J, et al. Metformin synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia to sorafenib by promoting mTOR-mediated apoptosis and autophagy. Leuk Res. 2015;39(12):1421–1427. doi: 10.1016/j.leukres.2015.09.016.
    1. Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Structu Mol Biol. 2016;23(6):487–493. doi: 10.1038/nsmb.3216.
    1. Choi YH, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 2014;20(5):793–807. doi: 10.2174/138161282005140214165212.
    1. Rohiff C, Glazer R, et al. Regulation of the MDR1 remote by cyclic AMP-dependent protein kinase and transcription factor SP1. Int J Oncol. 1998;12(2):383–386.
    1. Parissenti AM, Gannon BR, Villeneuve DJ, et al. Lack modulation of MDR-1 gene expression by dominant inhibition of cAMP-dependent protein kinase doxorubicin-resistance MCF-7 breast cancer cells. Int J Cancer. 1999;82(86):893–900. doi: 10.1002/(SICI)1097-0215(19990909)82:6<893::AID-IJC20>;2-8.
    1. Wu W, Yang JL, Wang YL, et al. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription. World J Hepatol. 2016;8(23):985–993. doi: 10.4254/wjh.v8.i23.985.
    1. XueC WangC, Sun Y, et al. Targeting P-glycoprotein function, p53 and energy metabolism: combination of metformin and 2-deoxyglucose reverses the multidrug resistance of MCF-7/Dox cells to doxorubicin. Oncotarget. 2017;8(5):8622–8632.
    1. Havesy MR. Metformin-associated lactic acidosis: an atypical presentation. Adv Emerg Nurs J. 2017;39(1):26–30.
    1. Almirall J, Bricullé M, Gonzalez-Clemente JM. Metformin-associated lactic acidosis in type 2 diabetes mellitus: incidence and presentation in common clinical practice. Nephrol Dial Transplant. 2008;23(7):2436–2438. doi: 10.1093/ndt/gfn152.
    1. Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenger. J Mol Endocrinol. 2012;48(3):R31–R43. doi: 10.1530/JME-12-0007.
    1. Benoit V, Guigas B, Sanz N, et al. Cellular and molecular mechanism of metformin: an overview. Clin Sci. 2012;122(6):253–270. doi: 10.1042/CS20110386.
    1. Golozar A, Liu S, Lin JA, Peairs K, Yeh HC. Does metformin reduce cancer risks? Methodologic considerations. Curr Diab Rep. 2016;16(1):4. doi: 10.1007/s11892-015-0697-z.
    1. Zhang XW, Ma YX, Sun Y, et al. Gemcitabine in combination with a second cytotoxic agent in the first-line treatment of locally advanced or metastatic pancreatic cancer: a systematic review and meta-analysis. Target Oncol. 2017;12(3):309–321. doi: 10.1007/s11523-017-0486-5.
    1. Kordes S, Pollak MN, Zwinderman AH, Mathôt RA, Weterman MJ, Beeker A, Punt CJ, Richel DJ, Wilmink JW. Metforminin patients with advanced pancreatic cancer: a double-blind, randomized, placebo-controlled phase 2 trial. Lancet Oncol. 2015;16(7):839–847. doi: 10.1016/S1470-2045(15)00027-3.
    1. Ahmed I, Ferro A, Cohler A, et al. Impact of metformin use on survival in locally-advanced, inoperable non-small cell lung cancer treated with definitive chemoradiation. J Thorac Dis. 2015;7(3):346–355.
    1. Montaudié H, Cerezo M, Bahadoran P. Metforminmono therapy in melanoma: a pilot, open-label, prospective and multicentric study indicates no benefit. Pigment Cell Melanoma Res. 2017;30(3):378–380. doi: 10.1111/pcmr.12576.
    1. Khawaja MR, Nick AM, Madhusudanannair V, et al. Phase I dose escalation study of temsirolimus in combination with metformin in patients with advanced/refractory cancers. Cancer Chemother Pharmacol. 2016;77(5):973–977. doi: 10.1007/s00280-016-3009-7.
    1. Ezewuiro O, Grushko TA, Kocherginsky M, et al. Association of metformin use with outcomes in advanced endometrial cancer treated with chemotherapy. PLoS One. 2016;11(1):e0147145. doi: 10.1371/journal.pone.0147145.
    1. Kaddis N, Saif MW. Second-line treatment for pancreatic cancer. JOP. 2014;15(4):344–347.
    1. Tan BX, Yao WX, Ge J, et al. Prognostic influence of metformin as first-line chemotherapy for advanced non small cell lung cancer in patients with type 2 diabetes. Cancer. 2011;117(22):5103–5111. doi: 10.1002/cncr.26151.

Source: PubMed

3
Prenumerera