Outcomes after Treatment of Metaplastic Versus Other Breast Cancer Subtypes

Amy C Moreno, Yan Heather Lin, Isabelle Bedrosian, Yu Shen, Gildy V Babiera, Simona F Shaitelman, Amy C Moreno, Yan Heather Lin, Isabelle Bedrosian, Yu Shen, Gildy V Babiera, Simona F Shaitelman

Abstract

Purpose: Metaplastic breast cancer (BC) is an uncommon yet aggressive histologic subtype of BC. We sought to identify factors associated with its diagnosis and compare the management and outcomes of metaplastic BC with those of other BCs and triple negative invasive ductal carcinoma in particular given how often it has a triple negative phenotype. Patients and Methods: We identified women diagnosed with invasive BC in 2010-2014 in the National Cancer Data Base, and used univariate analysis to compare baseline patient and tumor characteristics by BC subtype. Overall survival (OS) was estimated with the Kaplan-Meier method, and multivariate Cox proportional hazards models were used to identify independent predictors of OS. Results: Of 247,355 cases, 2,084 (0.8%) were metaplastic BC, 55,998 (23%) triple negative BC, and 77% other BC. Relative to non-metaplastic BC, women with metaplastic BC were more likely to be older at diagnosis (median age, 62 vs. 59 years), have ≥1 comorbid conditions (22% vs. 18%), and be on Medicare (41% vs. 33%; P<0.001). Metaplastic BCs tended to be basal-like (77%), and relative to triple-negative or other BC, metaplastic BC was associated with higher clinical T status (cT3-4, 18% vs. 11%, 8%), no clinical nodal involvement (cN0, 86%, 77%, 80%), no lymphovascular invasion (72%, 65%, 62%), and high-grade tumors (71%, 77%, 35%) (P<0.001). Most metaplastic BCs were treated with mastectomy (58%), sentinel lymph node dissection (65%), chest wall or breast irradiation (74%), and chemotherapy (75%) as adjuvant therapy (60%). At a median follow-up time of 44.5 months, OS rates were lower for metaplastic BC than for triple-negative or other BC across all clinical stages at 5 years (stage I, 85%, 87%, 91%; II, 73%, 77%, 87%; III, 43%, 53%, 75%) and at 3 years (Stage IV, 15%, 22%, 64%; P<0.001). On multivariate analysis, increasing age, advanced clinical stage, lymphovascular invasion, axillary (vs. sentinel) node dissection, and no radiation or chemotherapy were associated with worse outcomes in metaplastic BC. Extent of surgery affected survival for triple-negative and other BC but not for metaplastic BC. Conclusion: Outcomes for metaplastic BC continue to be worse than those for other BC subtypes despite modern treatments. Optimizing systemic therapy options, which was a significant predictor of survival, should be a priority in managing metaplastic BC.

Keywords: breast cancer outcomes; chemotherapy.; metaplastic breast cancer; radiation therapy; triple negative breast cancer.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

© The author(s).

Figures

Figure 1
Figure 1
CONSORT diagram. BC, breast cancer.
Figure 2
Figure 2
Overall survival curves of breast cancer types by clinical stage, examining metaplastic, triple negative, and other breast cancers. Abbreviation: MBC, metaplastic breast cancer.
Figure 3
Figure 3
Overall survival curves for patients with metaplastic and non-metaplastic breast cancer stratified by receptor status. Abbreviations: HER2, Human epidermal growth factor receptor 2; HR, hormone receptor; MBC, metaplastic breast cancer.
Figure 4
Figure 4
Overall survival curves for patients with metaplastic, triple negative, and other breast cancer stratified by race. Abbreviations: BC, breast cancer.

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.
    1. Yerushalmi R, Hayes MM, Gelmon KA. Breast carcinoma-rare types: review of the literature. Ann Oncol. 2009;20(11):1763–1770.
    1. Günhan-Bilgen I, Memiş A, Ustün EE, Zekioglu O, Ozdemir N. Metaplastic carcinoma of the breast: clinical, mammographic, and sonographic findings with histopathologic correlation. AJR Am J Roentgenol. 2002;178(6):1421–1425.
    1. Jung S-Y, Kim HY, Nam B-H. et al. Worse prognosis of metaplastic breast cancer patients than other patients with triple-negative breast cancer. Breast Cancer Res Treat. 2010;120(3):627–637.
    1. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast: V. Metaplastic carcinoma with osteoclastic giant cells. Hum Pathol. 1990;21(11):1142–1150.
    1. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. I. Matrix-producing carcinoma. Hum Pathol. 1989;20(7):628–635.
    1. Wargotz ES, Deos PH, Norris HJ. Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol. 1989;20(8):732–740.
    1. Lee H, Jung S-Y, Ro JY. et al. Metaplastic breast cancer: clinicopathological features and its prognosis. J Clin Pathol. 2012;65(5):441–446.
    1. He X, Ji J, Dong R, Prognosis in different subtypes of metaplastic breast cancer: a population-based analysis. Breast Cancer Res Treat. October; 2018.
    1. National Cancer Database
    1. Chagpar AB, Scoggins CR, Martin RCG. et al. Factors Determining Adequacy of Axillary Node Dissection in Breast Cancer Patients. Breast J. 2007;13(3):233–237.
    1. Bembenek A, Schlag PM. Lymph-node dissection in breast cancer. Langenbeck's Arch Surg. 2000;385(4):236–245.
    1. Woolson RF. Statistical Methods for the Analysis of Biomedical Data. New York, USA: John Wiley & Sons; 1987.
    1. Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATIONS*. Source J Am Stat Assoc. 1958;53(282):457–481.
    1. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966;50(3):163–170.
    1. D.R. C. Regression Models and Life Tables. Cox Life Tables. 1972;2:187–220.
    1. Rayson D, Adjei AA, Suman VJ, Wold LE, Ingle JN. Metaplastic breast cancer: prognosis and response to systemic therapy. Ann Oncol Off J Eur Soc Med Oncol. 1999;10(4):413–419.
    1. Bilimoria KY, Stewart AK, Winchester DP, Ko CY. The National Cancer Data Base: a powerful initiative to improve cancer care in the United States. Ann Surg Oncol. 2008;15(3):683–690.
    1. Ong CT, Campbell BM, Thomas SM. et al. Metaplastic Breast Cancer Treatment and Outcomes in 2500 Patients: A Retrospective Analysis of a National Oncology Database. Ann Surg Oncol. 2018;25(8):2249–2260.
    1. Dietze EC, Sistrunk C, Miranda-Carboni G, O'Regan R, Seewaldt VL. Triple-negative breast cancer in African-American women: disparities versus biology. Nat Rev Cancer. 2015;15(4):248–254.
    1. Rakha EA, El-Sayed ME, Green AR, Lee AHS, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.
    1. ROJAS K, STUCKEY A. Breast Cancer Epidemiology and Risk Factors. Clin Obstet Gynecol. 2016;59(4):651–672.
    1. Liao H-Y, Zhang W-W, Sun J-Y, Li F-Y, He Z-Y, Wu S-G. The Clinicopathological Features and Survival Outcomes of Different Histological Subtypes in Triple-negative Breast Cancer. J Cancer. 2018;9(2):296–303.
    1. El Zein D, Hughes M, Kumar S. et al. Metaplastic Carcinoma of the Breast Is More Aggressive Than Triple-negative Breast Cancer: A Study From a Single Institution and Review of Literature. Clin Breast Cancer. 2017;17(5):382–391.
    1. Liedtke C, Mazouni C, Hess KR. et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–1281.
    1. Cortazar P, Zhang L, Untch M. et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–172.
    1. Fisher B, Brown A, Mamounas E. et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15(7):2483–2493.
    1. Chen IC, Lin CH, Huang CS. et al. Lack of efficacy to systemic chemotherapy for treatment of metaplastic carcinoma of the breast in the modern era. Breast Cancer Res Treat. 2011;130(1):345–351.
    1. Hennessy BT, Gonzalez-Angulo A-M, Stemke-Hale K. et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–4124.
    1. Prat A, Parker JS, Karginova O. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12(5):R68.
    1. Yu K-D, Zhu R, Zhan M. et al. Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin Cancer Res. 2013;19(10):2723–2733.
    1. Basho RK, Yam C, Gilcrease M. et al. Comparative Effectiveness of an mTOR-Based Systemic Therapy Regimen in Advanced, Metaplastic and Nonmetaplastic Triple-Negative Breast Cancer. Oncologist. 2018;23(11):1300–1309.
    1. Basho RK, Gilcrease M, Murthy RK. et al. Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer. JAMA Oncol. 2017;3(4):509.
    1. Bergom C, Currey A, Desai N, Tai A, Strauss JB. Deep Inspiration Breath Hold: Techniques and Advantages for Cardiac Sparing During Breast Cancer Irradiation. Front Oncol. 2018;8:87.
    1. Latty D, Stuart KE, Wang W, Ahern V. Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci. 2015;62(1):74–81.
    1. Leyrer CM, Berriochoa CA, Agrawal S. et al. Predictive factors on outcomes in metaplastic breast cancer. Breast Cancer Res Treat. 2017;165(3):499–504.
    1. Takala S, Heikkilä P, Nevanlinna H, Blomqvist C, Mattson J. Metaplastic carcinoma of the breast: Prognosis and response to systemic treatment in metastatic disease. Breast J. 2019;25(3):418–424.
    1. Harper NW, Hodges KB, Stewart RL, Adjuvant Treatment of Triple-Negative Metaplastic Breast Cancer With Weekly Paclitaxel and Platinum Chemotherapy: Retrospective Case Review From a Single Institution. Clin Breast Cancer. May; 2019.

Source: PubMed

3
Prenumerera