A genetic screen identifies Tor as an interactor of VAPB in a Drosophila model of amyotrophic lateral sclerosis

Senthilkumar Deivasigamani, Hemant Kumar Verma, Ryu Ueda, Anuradha Ratnaparkhi, Girish S Ratnaparkhi, Senthilkumar Deivasigamani, Hemant Kumar Verma, Ryu Ueda, Anuradha Ratnaparkhi, Girish S Ratnaparkhi

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by selective death of motor neurons. In 5-10% of the familial cases, the disease is inherited because of mutations. One such mutation, P56S, was identified in human VAPB that behaves in a dominant negative manner, sequestering wild type protein into cytoplasmic inclusions. We have conducted a reverse genetic screen to identify interactors of Drosophila VAPB. We screened 2635 genes and identified 103 interactors, of which 45 were enhancers and 58 were suppressors of VAPB function. Interestingly, the screen identified known ALS loci - TBPH, alsin2 and SOD1. Also identified were genes involved in cellular energetics and homeostasis which were used to build a gene regulatory network of VAPB modifiers. One key modifier identified was Tor, whose knockdown reversed the large bouton phenotype associated with VAP(P58S) expression in neurons. A similar reversal was seen by over-expressing Tuberous Sclerosis Complex (Tsc1,2) that negatively regulates TOR signaling as also by reduction of S6K activity. In comparison, the small bouton phenotype associated with VAP(wt) expression was reversed with Tsc1 knock down as well as S6K-CA expression. Tor therefore interacts with both VAP(wt) and VAP(P58S), but in a contrasting manner. Reversal of VAP(P58S) bouton phenotypes in larvae fed with the TOR inhibitor Rapamycin suggests upregulation of TOR signaling in response to VAP(P58S) expression. The VAPB network and further mechanistic understanding of interactions with key pathways, such as the TOR cassette, will pave the way for a better understanding of the mechanisms of onset and progression of motor neuron disease.

Keywords: ALS; Drosophila RNAi screen; Neurodegeneration; TOR; VAP.

Conflict of interest statement

Competing interests: The authors have declared that no conflict of interest exists.

© 2014. Published by The Company of Biologists Ltd.

Figures

Fig. 1.. Scheme for the enhancer/suppressor screen.
Fig. 1.. Scheme for the enhancer/suppressor screen.
(A) A sensitized genetic background (sca-Gal4,UAS-dVAP) was used for a screen to identify interactors of dVAP. A recombinant stable line, expressing VAP in the sca domain was found to reduce the number of 10 macro chaetae (marked by arrowheads in w1118) to about 5–6 at 25°C. At an increased VAP dosage, at 28°C, the macro chaetae reduced to 0–1. Expressing dsRNA for VAP, in a dVAP over-expression background, led to a reversal of the phenotype with macro chaetae reverting to wild type levels both at 25°C and 28°C. Numbers at the top right hand corner of each picture are average macro chaetae, counted for ten females of the corresponding genotype. (B) Primary screening was done at both 25°C and 28°C. A sca-Gal4, UAS-VAP/Cyo recombinant, stable line was generated and females from that line were crossed to males with different transgenic RNAi inserts. Genes that lead to a further decrease of macro chaetae (from 5–6) at 25°C were deemed enhancers and genes that increased number of macro chaetae (from 0) at 28°C were considered to be suppressors. 2635 genes, encompassing 4600 individual lines were used for the primary screen. 930 genes showed change in the phenotype and were categorized as modifiers. 930 genes identified in the primary screen were used for a thorough, quantitative screening, with controls, at 25°C. Macrochaetae from ten F1 females were counted and compared to the base line 5.5 macro chaetae in the master control (sca-Gal4, UAS-VAP/+). Student's t-test was used to select lines that had significantly greater macro chaetae and these were considered bona-fide suppressors. Lines that did not meet our threshold for significance (p>0.01, Average macro chaetae <7.5) were discarded. F1 females with average macro chaetae <5.5 were compared to the related RNAi control (sca-Gal4/+; UAS-RNAi/+) at 25°C. Again, a Student's t-test was used to select lines above our threshold for significance (p<0.01, average macro chaetae <4). Starting with 2635 genes in the primary screen, the final numbers for enhancers and suppressors after comparison with controls and rigorous statistical analyses was 45 and 58 respectively. These genes were shortlisted for the validation process.
Fig. 2.. An integrated network of dVAP…
Fig. 2.. An integrated network of dVAP genetic interactors.
An extended network of dVAP network was built by integrating VAP interaction data from our screen (103 genes) with known physical interactors of dVAP. The extended network (not shown) includes 406 genes and 953 edges. (A) Analysis indicated that 36 modifiers (displayed as circles), which are a subset of the 103 modifiers discovered, interact physically among themselves. Blue connecting lines (edges) indicate physical interaction. (B) Drosophila homologs of known ALS causing loci, TBPH, Alsin and sod1 are suppressors of dVAP function and are part of the genetic network. The genotype for each cross is Sca-Gal4/+; UAS-VAP/UAS-Gene-RNAi. For each figure, average macro chaetae values from ten females are represented on the top right hand corner. (C) Thirty-five known physical interactors of VAP are a subset of the 2635 genes screened in this study. Of these, eight genes were found to be genetic interactors of VAP. SNAMA, tmod, lethal (1) G0222, epsilon-COP and Pex-19 are suppressors while Droj2, karyopherin beta3, Porin are enhancers.
Fig. 3.. The Drosophila NMJ is used…
Fig. 3.. The Drosophila NMJ is used to screen for interaction of modifiers with VAP(P58S).
Thirteen of the 103 modifiers discovered in our macro chaetae screen were tested in the larval muscle-4 NMJ for interaction with VAP(P58S). For this and subsequent figures, approximately 15 NMJs were dissected, stained (anti-HRP, red), imaged and measured for the average size of boutons (displayed in yellow at the top RHS of each figure). (A) A wild type (C155-Gal4/+) NMJ. The average bouton size is 3.987 (±0.03). Shown here and below is Z-series of a synapse rendered as maximum intensity projection. (B) Expression of UAS-VAP(P58S), using the C155-Gal4 driver increases the size of the boutons. (C–F) Knockdown of CG6048 (C), CG9172 (D), TBPH (E) and Nup75 (F) in a C155/UAS-VAP(P58S) background reverses the effect of the VAP(P58S) over-expression and rescues bouton size to wild-type levels. (G) Quantitation of bouton size (in micrometer) for the RNAi knockdown of each gene tested in a VAP(P58S) background (top panel) and in a wild type background (bottom panel). For this and subsequent NMJ figures, error bars represent standard errors of the mean (SEM). Scale bar: 5 µm. * indicates a p-value<0.01 (but >0.001), while ** indicates a p-value of <0.001.
Fig. 4.. dTOR, the fly homolog of…
Fig. 4.. dTOR, the fly homolog of mTOR modifies the VAP(P58S) over-expression phenotype at the NMJ.
(A) VAP(P58S) over-expression using C155-Gal4 leads to larger boutons at the NMJ. (B) Knockdown of Tor by RNAi in VAP(P58S) background restores the bouton size to wild type levels. (C) Knocking down Tor using RNAi did not have any effect on bouton size. (D) Over-expression of TOR-TED alone using C155-Gal4 resulted in increased bouton size. (E) Reduction of TOR activity by expressing a dominant negative form of TOR, TOR-TED reversed the increase in bouton size caused by UAS-VAP(P58S). Scale bar: 5 µm. (F) Quantitation of rescue in bouton size in VAP(P58S) background in response to reduced TOR.
Fig. 5.. Increased TOR signaling activates its…
Fig. 5.. Increased TOR signaling activates its downstream component S6K.
(A) Over-expression of constitutively active S6K using C155-Gal4 in a wild type background did not affect the bouton size. (B) Over-expression of constitutively active S6K using C155-Gal4 in a VAP(P58S) over-expression background did not reduce the bouton size. (C) Reducing S6K activity using dominant negative form did not have significant effect on bouton size. (D) Reducing S6K activity using dominant negative form rescued the increased bouton size in a VAP(P58S) background. Average size of boutons from about 15 NMJs is displayed in yellow at the top right of each figure. Scale bar: 5 µm. (E) Quantitation of effect of S6K on the bouton size in presence and absence of VAP(P58S).
Fig. 6.. Increased TSC activity reverses the…
Fig. 6.. Increased TSC activity reverses the VAP(P58S) bouton phenotype.
(A–D) Over-expression and knocking down of Rheb had no effect on bouton size in the VAP(P58S) background. (E,F) Increasing Tsc activity by co-expressing Tsc1,2 rescued the bouton size in VAP(P58S) background (F) while Tsc1,2 over-expression by itself did not have any effect on bouton size (E). (G,H) Knocking down Tsc1 in VAP(P58S) background did not rescue the bouton size. Scale bar: 5 µm. Average size of boutons from about 15 NMJs is displayed in yellow at the top right of each figure. (I) Quantitation of effect of perturbations in Tsc and Rheb levels on bouton size.
Fig. 7.. Decreased TSC activity and increased…
Fig. 7.. Decreased TSC activity and increased S6K activity reverses the VAP(wt) small bouton phenotype.
(A) VAP wild type over-expression using C155-Gal4 leads to reduced bouton size. (B–D) Reducing TOR pathway activity by over-expressing Tsc1,2 (B) or TOR dominant negative (D) does not affect the bouton size in the VAP wild type over-expression background. However, increasing TOR pathway activity using Tsc1 knock down increased the bouton size to wild types levels (C). (E–H) TOR downstream components can alter the bouton size in VAP wild type over-expression. Over-expression of a constitutively active form of S6K (E) and constitutively active Thor (G) rescues the bouton size, while the dominant negative form does not (F). Over-expression of Atg1 along VAP wild type reduced the bouton size further (H). Scale bar: 5 µm. Average size of boutons from about 15 NMJs is displayed in yellow at the top right of each figure. (I) Quantitation of effect of TOR pathway and its downstream components in VAP wild type over-expression mediated bouton size. Error bars represent SEM. * indicates a p-value<0.01 (but >0.001), while ** indicates a p-value of <0.001.
Fig. 8.. Rapamycin feeding mitigates VAP(P58S) bouton…
Fig. 8.. Rapamycin feeding mitigates VAP(P58S) bouton phenotype.
(A,B) C155-Gal4 larvae fed with DMSO (A) and 200 nM Rapamycin (B). (C,D) C155>VAP(P58S) larvae fed with DMSO (C) and 200 nM Rapamycin (D). Rapamycin, a chemical inhibitor of TOR effectively restores bouton size to control levels in VAP(P58S) animals. (E) Quantitation of effects of Rapamycin on VAP(P58S) expressing animals. (F) A model for the effect of VAP(P58S) expression on TOR. Genetic interactors (grey filled circles or rounded squares) of VAP(P58S) suggests an up-regulation of Tor (red arrows) in neurons while VAP(wt) expression appears to have opposite effects (blue arrow). Rapamycin feeding of larvae reverses VAP(P58S) phenotypes, pointing to an increase in TOR signaling in VAP(P58S) expressing neurons.

References

    1. Aliaga L., Lai C., Yu J., Chub N., Shim H., Sun L., Xie C., Yang W. J., Lin X., O'Donovan M. J. et al. (2013). Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum. Mol. Genet. 22, 4293–4305 10.1093/hmg/ddt279
    1. Amarilio R., Ramachandran S., Sabanay H., Lev S. (2005). Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction. J. Biol. Chem. 280, 5934–5944 10.1074/jbc.M409566200
    1. Ambegaokar S. S., Jackson G. R. (2011). Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum. Mol. Genet. 20, 4947–4977 10.1093/hmg/ddr432
    1. Andersen P. M., Al-Chalabi A. (2011). Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7, 603–615 10.1038/nrneurol.2011.150
    1. Caccamo A., Majumder S., Deng J. J., Bai Y., Thornton F. B., Oddo S. (2009). Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J. Biol. Chem. 284, 27416–27424 10.1074/jbc.M109.031278
    1. Caccamo A., Majumder S., Richardson A., Strong R., Oddo S. (2010). Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120 10.1074/jbc.M110.100420
    1. Chen X., Burgoyne R. D. (2012). Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms. BMC Genomics 13, 71 10.1186/1471-2164-13-71
    1. Chen H. J., Anagnostou G., Chai A., Withers J., Morris A., Adhikaree J., Pennetta G., de Belleroche J. S. (2010). Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J. Biol. Chem. 285, 40266–40281 10.1074/jbc.M110.161398
    1. Cheng L., Locke C., Davis G. W. (2011). S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development. J. Cell Biol. 194, 921–935 10.1083/jcb.201101042
    1. Ching J. K., Elizabeth S. V., Ju J. S., Lusk C., Pittman S. K., Weihl C. C. (2013). mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy. Hum. Mol. Genet. 22, 1167–1179 10.1093/hmg/dds524
    1. Christianson J. C., Olzmann J. A., Shaler T. A., Sowa M. E., Bennett E. J., Richter C. M., Tyler R. E., Greenblatt E. J., Harper J. W., Kopito R. R. (2012). Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14, 93–105 10.1038/ncb2383
    1. Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E. D., Sevier C. S., Ding H., Koh J. L., Toufighi K., Mostafavi S. et al. (2010). The genetic landscape of a cell. Science 327, 425–431 10.1126/science.1180823
    1. De Vos K. J., Mórotz G. M., Stoica R., Tudor E. L., Lau K. F., Ackerley S., Warley A., Shaw C. E., Miller C. C. (2012). VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 10.1093/hmg/ddr559
    1. Dormann D., Rodde R., Edbauer D., Bentmann E., Fischer I., Hruscha A., Than M. E., Mackenzie I. R., Capell A., Schmid B. et al. (2010). ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841–2857 10.1038/emboj.2010.143
    1. Floto R. A., Sarkar S., Perlstein E. O., Kampmann B., Schreiber S. L., Rubinsztein D. C. (2007). Small molecule enhancers of rapamycin-induced TOR inhibition promote autophagy, reduce toxicity in Huntington's disease models and enhance killing of mycobacteria by macrophages. Autophagy 3, 620–622 10.4161/auto.4898
    1. Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A., Lin J., Minguez P., Bork P., von Mering C. et al. (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 10.1093/nar/gks1094
    1. Gkogkas C., Middleton S., Kremer A. M., Wardrope C., Hannah M., Gillingwater T. H., Skehel P. (2008). VAPB interacts with and modulates the activity of ATF6. Hum. Mol. Genet. 17, 1517–1526 10.1093/hmg/ddn040
    1. Guruharsha K. G., Rual J. F., Zhai B., Mintseris J., Vaidya P., Vaidya N., Beekman C., Wong C., Rhee D. Y., Cenaj O. et al. (2011). A protein complex network of Drosophila melanogaster. Cell 147, 690–703 10.1016/j.cell.2011.08.047
    1. Han S. M., Tsuda H., Yang Y., Vibbert J., Cottee P., Lee S. J., Winek J., Haueter C., Bellen H. J., Miller M. A. (2012). Secreted VAPB/ALS8 major sperm protein domains modulate mitochondrial localization and morphology via growth cone guidance receptors. Dev. Cell 22, 348–362 10.1016/j.devcel.2011.12.009
    1. Han J., Back S. H., Hur J., Lin Y. H., Gildersleeve R., Shan J., Yuan C. L., Krokowski D., Wang S., Hatzoglou M. et al. (2013a). ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 10.1038/ncb2738
    1. Han J. H., Yu T. H., Ryu H. H., Jun M. H., Ban B. K., Jang D. J., Lee J. A. (2013b). ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons. Exp. Cell Res. 319, 1998–2005 10.1016/j.yexcr.2013.05.025
    1. Harris T. E., Lawrence J. C., Jr (2003). TOR signaling. Sci. STKE 2003, re15 10.1126/stke.2122003re15
    1. Hartai Z., Klivenyi P., Janaky T., Penke B., Dux L., Vecsei L. (2005). Kynurenine metabolism in plasma and in red blood cells in Parkinson's disease. J. Neurol. Sci. 239, 31–35 10.1016/j.jns.2005.07.006
    1. Heitman J., Movva N. R., Hall M. N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 10.1126/science.1715094
    1. Hoeffer C. A., Klann E. (2010). mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67–75 10.1016/j.tins.2009.11.003
    1. Hu Y., Flockhart I., Vinayagam A., Bergwitz C., Berger B., Perrimon N., Mohr S. E. (2011). An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357 10.1186/1471-2105-12-357
    1. Huang D. W., Sherman B. T., Lempicki R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 10.1038/nprot.2008.211
    1. Johnson S. C., Rabinovitch P. S., Kaeberlein M. (2013). mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 10.1038/nature11861
    1. Kabashi E., El Oussini H., Bercier V., Gros-Louis F., Valdmanis P. N., McDearmid J., Mejier I. A., Dion P. A., Dupre N., Hollinger D. et al. (2013). Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 2350–2360 10.1093/hmg/ddt080
    1. Kaltenbach L. S., Romero E., Becklin R. R., Chettier R., Bell R., Phansalkar A., Strand A., Torcassi C., Savage J., Hurlburt A. et al. (2007). Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 3, e82 10.1371/journal.pgen.0030082
    1. Kambris Z., Brun S., Jang I. H., Nam H. J., Romeo Y., Takahashi K., Lee W. J., Ueda R., Lemaitre B. (2006). Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808–813 10.1016/j.cub.2006.03.020
    1. Laplante M., Sabatini D. M. (2012). mTOR signaling in growth control and disease. Cell 149, 274–293 10.1016/j.cell.2012.03.017
    1. Lev S., Ben Halevy D., Peretti D., Dahan N. (2008). The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol. 18, 282–290 10.1016/j.tcb.2008.03.006
    1. Lin A., Wang R. T., Ahn S., Park C. C., Smith D. J. (2010). A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res. 20, 1122–1132 10.1101/gr.104216.109
    1. Liu S., Lu B. (2010). Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet. 6, e1001237 10.1371/journal.pgen.1001237
    1. Malagelada C., Jin Z. H., Jackson-Lewis V., Przedborski S., Greene L. A. (2010). Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J. Neurosci. 30, 1166–1175 10.1523/JNEUROSCI.3944-09.2010
    1. Marygold S. J., Leyland P. C., Seal R. L., Goodman J. L., Thurmond J., Strelets V. B., Wilson R. J. FlyBase consortium(2013). FlyBase: improvements to the bibliography. Nucleic Acids Res. 41, D751–D757 10.1093/nar/gks1024
    1. Mitne-Neto M., Ramos C. R., Pimenta D. C., Luz J. S., Nishimura A. L., Gonzales F. A., Oliveira C. C., Zatz M. (2007). A mutation in human VAP-B–MSP domain, present in ALS patients, affects the interaction with other cellular proteins. Protein Expr. Purif. 55, 139–146 10.1016/j.pep.2007.04.007
    1. Mórotz G. M., De Vos K. J., Vagnoni A., Ackerley S., Shaw C. E., Miller C. C. (2012). Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum. Mol. Genet. 21, 1979–1988 10.1093/hmg/dds011
    1. Mostafavi S., Ray D., Warde-Farley D., Grouios C., Morris Q. (2008). GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9, Suppl. 1S4 10.1186/gb-2008-9-s1-s4
    1. Moustaqim-Barrette A., Lin Y. Q., Pradhan S., Neely G. G., Bellen H. J., Tsuda H. (2014). The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum. Mol. Genet. 23, 1975–1989 10.1093/hmg/ddt594
    1. Natarajan R., Trivedi-Vyas D., Wairkar Y. P. (2013). Tuberous sclerosis complex regulates Drosophila neuromuscular junction growth via the TORC2/Akt pathway. Hum. Mol. Genet. 22, 2010–2023 10.1093/hmg/ddt053
    1. Nikawa J., Murakami A., Esumi E., Hosaka K. (1995). Cloning and sequence of the SCS2 gene, which can suppress the defect of INO1 expression in an inositol auxotrophic mutant of Saccharomyces cerevisiae. J. Biochem. 118, 39–45.
    1. Nishimura Y., Hayashi M., Inada H., Tanaka T. (1999). Molecular cloning and characterization of mammalian homologues of vesicle-associated membrane protein-associated (VAMP-associated) proteins. Biochem. Biophys. Res. Commun. 254, 21–26 10.1006/bbrc.1998.9876
    1. Nishimura A. L., Mitne-Neto M., Silva H. C., Richieri-Costa A., Middleton S., Cascio D., Kok F., Oliveira J. R., Gillingwater T., Webb J. et al. (2004). A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831 10.1086/425287
    1. Nishimura A. L., Al-Chalabi A., Zatz M. (2005). A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population. Hum. Genet. 118, 499–500 10.1007/s00439-005-0031-y
    1. Pasinelli P., Brown R. H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723 10.1038/nrn1971
    1. Pennetta G., Hiesinger P. R., Fabian-Fine R., Meinertzhagen I. A., Bellen H. J. (2002). Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron 35, 291–306 10.1016/S0896-6273(02)00769-9
    1. Penney J., Tsurudome K., Liao E. H., Elazzouzi F., Livingstone M., Gonzalez M., Sonenberg N., Haghighi A. P. (2012). TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction. Neuron 74, 166–178 10.1016/j.neuron.2012.01.030
    1. Pennuto M., Tinelli E., Malaguti M., Del Carro U., D'Antonio M., Ron D., Quattrini A., Feltri M. L., Wrabetz L. (2008). Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57, 393–405 10.1016/j.neuron.2007.12.021
    1. Peretti D., Dahan N., Shimoni E., Hirschberg K., Lev S. (2008). Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol. Biol. Cell 19, 3871–3884 10.1091/mbc.E08-05-0498
    1. Perry R. J., Ridgway N. D. (2006). Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell 17, 2604–2616 10.1091/mbc.E06-01-0060
    1. Prause J., Goswami A., Katona I., Roos A., Schnizler M., Bushuven E., Dreier A., Buchkremer S., Johann S., Beyer C. et al. (2013). Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 1581–1600 10.1093/hmg/ddt008
    1. Rao M., Song W., Jiang A., Shyr Y., Lev S., Greenstein D., Brantley-Sieders D., Chen J. (2012). VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity. PLoS ONE 7, e46281 10.1371/journal.pone.0046281
    1. Ratnaparkhi A., Lawless G. M., Schweizer F. E., Golshani P., Jackson G. R. (2008). A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism. PLoS ONE 3, e2334 10.1371/journal.pone.0002334
    1. Ravikumar B., Vacher C., Berger Z., Davies J. E., Luo S., Oroz L. G., Scaravilli F., Easton D. F., Duden R., O'Kane C. J. et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 10.1038/ng1362
    1. Sen A., Dimlich D. N., Guruharsha K. G., Kankel M. W., Hori K., Yokokura T., Brachat S., Richardson D., Loureiro J., Sivasankaran R. et al. (2013). Genetic circuitry of Survival motor neuron, the gene underlying spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 110, E2371–E2380 10.1073/pnas.1301738110
    1. Shulman J. M., De Jager P. L. (2009). Evidence for a common pathway linking neurodegenerative diseases. Nat. Genet. 41, 1261–1262 10.1038/ng1209-1261
    1. Silva M. C., Fox S., Beam M., Thakkar H., Amaral M. D., Morimoto R. I. (2011). A genetic screening strategy identifies novel regulators of the proteostasis network. PLoS Genet. 7, e1002438 10.1371/journal.pgen.1002438
    1. Skehel P. A., Martin K. C., Kandel E. R., Bartsch D. (1995). A VAMP-binding protein from Aplysia required for neurotransmitter release. Science 269, 1580–1583 10.1126/science.7667638
    1. Skehel P. A., Fabian-Fine R., Kandel E. R. (2000). Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proc. Natl. Acad. Sci. USA 97, 1101–1106 10.1073/pnas.97.3.1101
    1. Spilman P., Podlutskaya N., Hart M. J., Debnath J., Gorostiza O., Bredesen D., Richardson A., Strong R., Galvan V. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS ONE 5, e9979 10.1371/journal.pone.0009979
    1. Teuling E., Ahmed S., Haasdijk E., Demmers J., Steinmetz M. O., Akhmanova A., Jaarsma D., Hoogenraad C. C. (2007). Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J. Neurosci. 27, 9801–9815 10.1523/JNEUROSCI.2661-07.2007
    1. Thorp E., Li G., Seimon T. A., Kuriakose G., Ron D., Tabas I. (2009). Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 9, 474–481 10.1016/j.cmet.2009.03.003
    1. Tran D., Chalhoub A., Schooley A., Zhang W., Ngsee J. K. (2012). A mutation in VAPB that causes amyotrophic lateral sclerosis also causes a nuclear envelope defect. J. Cell Sci. 125, 2831–2836 10.1242/jcs.102111
    1. Tsuda H., Han S. M., Yang Y., Tong C., Lin Y. Q., Mohan K., Haueter C., Zoghbi A., Harati Y., Kwan J. et al. (2008). The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 133, 963–977 10.1016/j.cell.2008.04.039
    1. Tudor E. L., Galtrey C. M., Perkinton M. S., Lau K. F., De Vos K. J., Mitchell J. C., Ackerley S., Hortobágyi T., Vámos E., Leigh P. N. et al. (2010). Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 167, 774–785 10.1016/j.neuroscience.2010.02.035
    1. van Blitterswijk M., Vlam L., van Es M. A., van der Pol W. L., Hennekam E. A., Dooijes D., Schelhaas H. J., van der Kooi A. J., de Visser M., Veldink J. H. et al. (2012). Genetic overlap between apparently sporadic motor neuron diseases. PLoS ONE 7, e48983 10.1371/journal.pone.0048983
    1. van Ham T. J., Thijssen K. I., Breitling R., Hofstra R. M., Plasterk R. H., Nollen E. A. (2008). C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 4, e1000027 10.1371/journal.pgen.1000027
    1. Wang T., Lao U., Edgar B. A. (2009). TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J. Cell Biol. 186, 703–711 10.1083/jcb.200904090
    1. Wijesekera L. C., Leigh P. N. (2009). Amyotrophic lateral sclerosis. Orphanet J. Rare Dis. 4, 3 10.1186/1750-1172-4-3
    1. Yang Z., Huh S. U., Drennan J. M., Kathuria H., Martinez J. S., Tsuda H., Hall M. C., Clemens J. C. (2012). Drosophila Vap-33 is required for axonal localization of Dscam isoforms. J. Neurosci. 32, 17241–17250 10.1523/JNEUROSCI.2834-12.2012
    1. Zhang S., Binari R., Zhou R., Perrimon N. (2010). A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 184, 1165–1179 10.1534/genetics.109.112516
    1. Zhang X., Li L., Chen S., Yang D., Wang Y., Zhang X., Wang Z., Le W. (2011). Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412–425 10.4161/auto.7.4.14541
    1. Zoncu R., Efeyan A., Sabatini D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 10.1038/nrm3025

Source: PubMed

3
Prenumerera