The Evolving Pharmacotherapeutic Landscape for the Treatment of Sickle Cell Disease

Samir K Ballas, Samir K Ballas

Abstract

Sickle cell disease (SCD) is an extremely heterogeneous disease that has been associated with global morbidity and early mortality. More effective and inexpensive therapies are needed. During the last five years, the landscape of the pharmacotherapy of SCD has changed dramatically. Currently, 54 drugs have been used or under consideration to use for the treatment of SCD. These fall into 3 categories: the first category includes the four drugs (Hydroxyurea, L-Glutamine, Crizanlizumab tmca and Voxelotor) that have been approved by the United States Food and Drug Administration (FDA) based on successful clinical trials. The second category includes 22 drugs that failed, discontinued or terminated for now and the third category includes 28 drugs that are actively being considered for the treatment of SCD. Crizanlizumab and Voxelotor are included in the first and third categories because they have been used in more than one trial. New therapies targeting multiple pathways in the complex pathophysiology of SCD have been achieved or are under continued investigation. The emerging trend seems to be the use of multimodal drugs (i.e. drugs that have different mechanisms of action) to treat SCD similar to the use of multiple chemotherapeutic agents to treat cancer.

Keywords: Pharmacotherapeutic; Sickle cell disease.

Conflict of interest statement

Competing interests: The authors declare no conflict of Interest.

Figures

Figure 1
Figure 1
Sequence of complications of sickle cell anemia from birth through adult life. ACS = acute chest syndrome; AVN = Avascular necrosis; CVA = Cerebrovascular accident. From Hem Onc Clin North Am. 2005; 19:785–802. Used with permission.
Figure 2
Figure 2
Fingernails of a 38-year-old man with sickle cell anemia and hydroxyurea-induced melanonychia characterized by longitudinal (blue arrow) and diffuse (red arrow) bands. From J Blood Disorders Transf. 2013;4:5. Used with permission.
Figure 3
Figure 3
Randomized phase 2 trial of Regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. From Blood Adv. 2017;1(20):1645–9. Used with permission.

References

    1. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484. doi: 10.1371/journal.pmed.1001484.
    1. Odame I. Developing a global agenda for sickle cell disease: report of an international symposium and workshop in Cotonou, Republic of Benin. Am J Prev Med. 2010;38(4 Suppl):S571–5. doi: 10.1016/j.amepre.2009.12.021.
    1. McGann PT, Ware RE. Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain? Curr Opin Hematol. 2011;18(3):158–65. doi: 10.1097/MOH.0b013e32834521dd.
    1. Castro O, Rana SR, Bang KM, Scott RB. Age and prevalence of sickle-cell trait in a large ambulatory population. Genet Epidemiol. 1987;4(4):307–11. doi: 10.1002/gepi.1370040409.
    1. Steinberg MH, Forget BG, Higgs DR, Weatherall DJ. Disorders of hemoglobin: Genetics, Pathophysiology, and Clinical Management, Second Edition. 2nd ed. Cambridge: Cambridge University Press; 2009. p. 826.
    1. Goldsmith JC, Bonham VL, Joiner CH, Kato GJ, Noonan AS, Steinberg MH. Framing the research agenda for sickle cell trait: building on the current understanding of clinical events and their potential implications. Am J Hematol. 2012;87(3):340–6. doi: 10.1002/ajh.22271.
    1. Serjeant GR, Serjeant BE. Sickle cell disease. 3rd edition. Oxford: Oxfird University Press; 2001. p. 772.
    1. Bunn HF, Forget BG. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia: WB Saunders; 1986.
    1. Ballas SK, Park D, Wapner RJ. Neonatal screening for sickle cell disease in a metropolitan university hospital: efficacy and problems. J Med Screen. 1994;1(4):229–32. doi: 10.1177/096914139400100409.
    1. Shafer FE, Lorey F, Cunningham GC, Klumpp C, Vichinsky E, Lubin B. Newborn screening for sickle cell disease: 4 years of experience from California’s newborn screening program. J Pediatr Hematol Oncol. 1996;18(1):36–41. doi: 10.1097/00043426-199602000-00007.
    1. Diallo DA. Sickle cell disease in Africa: current situation and strategies for improving the quality and duration of survival. Bull Acad Natl Med. 2008;192(7):1361–72. discussion 72–3.
    1. Vichinsky E. Emerging ‘A’ therapies in hemoglobinopathies: agonists, antagonists, antioxidants, and arginine. Hematology Am Soc Hematol Educ Program. 2012;2012:271–5. doi: 10.1182/asheducation.V2012.1.271.3798318.
    1. Ballas SK. Sickle Cell Pain. 2nd Edition. Washington DC: International Association for the Study of Pain; 2014.
    1. Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–9. doi: 10.1182/blood-2015-09-618538.
    1. Motta I, Ghiaccio V, Cosentino A, Breda L. Curing Hemoglobinopathies: Challenges and Advances of Conventional and New Gene Therapy Approaches. Mediterr J Hematol Infect Dis. 2019 Nov 1;11(1):e2019067. doi: 10.4084/MJHID.2019.067. eCollection 2019. Review.
    1. Ballas SK. Sickle cell anaemia: progress in pathogenesis and treatment. Drugs. 2002;62(8):1143–72. doi: 10.2165/00003495-200262080-00003.
    1. Kotiah SD, Ballas SK. Investigational drugs in sickle cell anemia. Expert Opin Investig Drugs. 2009;18(12):1817–28. doi: 10.1517/13543780903247463.
    1. Kauf TL, Coates TD, Huazhi L, Mody-Patel N, Hartzema AG. The cost of health care for children and adults with sickle cell disease. Am J Hematol. 2009;84(6):323–7. doi: 10.1002/ajh.21408.
    1. Lanzkron S, Haywood C, Segal JB, Dover GJ. Hospitalization rates and costs of care of patients with sickle-cell anemia in the state of Maryland in the era of hydroxyurea. Am J Hematol. 2006;81(12):927–32. doi: 10.1002/ajh.20703.
    1. Moore RD, Charache S, Terrin ML, Barton FB, Ballas SK. Cost-effectiveness of hydroxyurea in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Am J Hematol. 2000;64(1):26–31. doi: 10.1002/(SICI)1096-8652(200005)64:1<26::AID-AJH5>;2-F.
    1. Benjamin LJ, Swinson GI, Nagel RL. Sickle cell anemia day hospital: an approach for the management of uncomplicated painful crises. Blood. 2000;95(4):1130–6. doi: 10.1182/blood.V95.4.1130.003k03a_1130_1136.
    1. Ballas SK. The cost of health care for patients with sickle cell disease. Am J Hematol. 2009;84(6):320–2. doi: 10.1002/ajh.21443.
    1. Manwani D, Frenette PS. Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Hematology Am Soc Hematol Educ Program. 2013;2013:362–9. doi: 10.1182/asheducation-2013.1.362.
    1. Kaul DK, Finnegan E, Barabino GA. Sickle red cell-endothelium interactions. Microcirculation. 2009;16(1):97–111. doi: 10.1080/10739680802279394.
    1. Madigan C, Malik P. Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease. Expert Rev Mol Med. 2006;8(9):1–23. doi: 10.1017/S1462399406010659.
    1. Gutsaeva DR, Parkerson JB, Yerigenahally SD, Kurz JC, Schaub RG, Ikuta T, et al. Inhibition of cell adhesion by anti-P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood. 2011;117(2):727–35. doi: 10.1182/blood-2010-05-285718.
    1. Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A. 2002;99(5):3047–51. doi: 10.1073/pnas.052522799.
    1. Zennadi R, Moeller BJ, Whalen EJ, Batchvarova M, Xu K, Shan S, et al. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood. 2007;110(7):2708–17. doi: 10.1182/blood-2006-11-056101.
    1. Hines PC, Zen Q, Burney SN, Shea DA, Ataga KI, Orringer EP, et al. Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood. 2003;101(8):3281–7. doi: 10.1182/blood-2001-12-0289.
    1. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121(8):1276–84. doi: 10.1182/blood-2012-11-451229.
    1. Morris CR, Kato GJ, Poljakovic M, Wang X, Blackwelder WC, Sachdev V, et al. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA. 2005;294(1):81–90. doi: 10.1001/jama.294.1.81.
    1. Kato GJ, Wang Z, Machado RF, Blackwelder WC, Taylor JGt, Hazen SL. Endogenous nitric oxide synthase inhibitors in sickle cell disease: abnormal levels and correlations with pulmonary hypertension, desaturation, haemolysis, organ dysfunction and death. Br J Haematol. 2009;145(4):506–13. doi: 10.1111/j.1365-2141.2009.07658.x.
    1. Chantrathammachart P, Pawlinski R. Tissue factor and thrombin in sickle cell anemia. Thromb Res. 2012;129(Suppl 2):S70–2. doi: 10.1016/j.thromres.2012.02.038.
    1. Chirico EN, Pialoux V. Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life. 2012;64(1):72–80. doi: 10.1002/iub.584.
    1. Gizi A, Papassotiriou I, Apostolakou F, Lazaropoulou C, Papastamataki M, Kanavaki I, et al. Assessment of oxidative stress in patients with sickle cell disease: The glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis. 2011;46(3):220–5. doi: 10.1016/j.bcmd.2011.01.002.
    1. Nur E, Biemond BJ, Otten HM, Brandjes DP, Schnog JJ. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol. 2011;86(6):484–9. doi: 10.1002/ajh.22012.
    1. Steinberg MH, McCarthy WF, Castro O, Ballas SK, Armstrong FD, Smith W, et al. The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: A 17.5 year follow-up. Am J Hematol. 2010;85(6):403–8. doi: 10.1002/ajh.21699.
    1. Evidence-Based Management of Sickle Cell Disease. Bethesda MD: National Heart, Lung, and Blood Institute; 2014. Expert Panel Report. [Available from: ]
    1. Ballas SK, McCarthy WF, Guo N, DeCastro L, Bellevue R, Barton BA, et al. Exposure to hydroxyurea and pregnancy outcomes in patients with sickle cell anemia. J Natl Med Assoc. 2009;101(10):1046–51. doi: 10.1016/S0027-9684(15)31072-5.
    1. Borba R, Lima CS, Grotto HZ. Reticulocyte parameters and hemoglobin F production in sickle cell disease patients undergoing hydroxyurea therapy. J Clin Lab Anal. 2003;17(2):66–72. doi: 10.1002/jcla.10070.
    1. Guarda CC, Silveira-Mattos PSM, Yahouedehou S, Santiago RP, Aleluia MM, Figueiredo CVB, et al. Hydroxyurea alters circulating monocyte subsets and dampens its inflammatory potential in sickle cell anemia patients. Sci Rep. 2019;9(1):14829. doi: 10.1038/s41598-019-51339-x.
    1. Penkert RR, Hurwitz JL, Thomas P, Rosch J, Dowdy J, Sun Y, et al. Inflammatory molecule reduction with hydroxyurea therapy in children with sickle cell anemia. Haematologica. 2018;103(2):e50–e4. doi: 10.3324/haematol.2017.177360.
    1. Ballas SK, Connes P. Rheological properties of sickle erythrocytes in patients with sickle-cell anemia: The effect of hydroxyurea, fetal hemoglobin, and alpha-thalassemia. Eur J Haematol. 2018;101(6):798–803. doi: 10.1111/ejh.13173.
    1. de Torres LS, da Silva DG, Belini E, Junior, de Almeida EA, Lobo CL, Cancado RD, et al. The influence of hydroxyurea on oxidative stress in sickle cell anemia. Rev Bras Hematol Hemoter. 2012;34(6):421–5. doi: 10.5581/1516-8484.20120106.
    1. Gardner K, Bell C, Bartram JL, Allman M, Awogbade M, Rees DC, et al. Outcome of adults with sickle cell disease admitted to critical care - experience of a single institution in the UK. Br J Haematol. 2010;150(5):610–3. doi: 10.1111/j.1365-2141.2010.08271.x.
    1. Brewin J, Tewari S, Menzel S, Kirkham F, Inusa B, Renney G, et al. The effects of hydroxycarbamide on the plasma proteome of children with sickle cell anaemia. Br J Haematol. 2019;186(6):879–86. doi: 10.1111/bjh.15996.
    1. Dasgupta T, Fabry ME, Kaul DK. Antisickling property of fetal hemoglobin enhances nitric oxide bioavailability and ameliorates organ oxidative stress in transgenic-knockout sickle mice. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R394–402. doi: 10.1152/ajpregu.00611.2009.
    1. Kaul DK, Liu XD, Chang HY, Nagel RL, Fabry ME. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest. 2004;114(8):1136–45. doi: 10.1172/JCI200421633.
    1. Rees DC. The rationale for using hydroxycarbamide in the treatment of sickle cell disease. Haematologica. 2011;96(4):488–91. doi: 10.3324/haematol.2011.041988.
    1. Davies S, Olujohungbe A. Hydroxyurea for sickle cell disease. Cochrane Database Syst Rev. 2001;(2):CD002202.
    1. Platt OS. Hydroxyurea for the treatment of sickle cell anemia. N Engl J Med. 2008;358(13):1362–9. doi: 10.1056/NEJMct0708272.
    1. Ballas SK, Marcolina MJ, Dover GJ, Barton FB. Erythropoietic activity in patients with sickle cell anaemia before and after treatment with hydroxyurea. Br J Haematol. 1999;105(2):491–6. doi: 10.1111/j.1365-2141.1999.01339.x.
    1. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995;332(20):1317–22. doi: 10.1056/NEJM199505183322001.
    1. Charache S, Barton FB, Moore RD, Terrin ML, Steinberg MH, Dover GJ, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine. 1996;75(6):300–26. doi: 10.1097/00005792-199611000-00002.
    1. Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ, et al. Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer. 2012;59(4):668–74. doi: 10.1002/pbc.24100.
    1. Armstrong FD, Elkin TD, Brown RC, Glass P, Rana S, Casella JF, et al. Developmental function in toddlers with sickle cell anemia. Pediatrics. 2013;131(2):e406–14. doi: 10.1542/peds.2012-0283.
    1. Lebensburger JD, Miller ST, Howard TH, Casella JF, Brown RC, Lu M, et al. Influence of severity of anemia on clinical findings in infants with sickle cell anemia: analyses from the BABY HUG study. Pediatr Blood Cancer. 2012;59(4):675–8. doi: 10.1002/pbc.24037.
    1. McGann PT, Flanagan JM, Howard TA, Dertinger SD, He J, Kulharya AS, et al. Genotoxicity associated with hydroxyurea exposure in infants with sickle cell anemia: results from the BABY-HUG phase III clinical trial. Pediatr Blood Cancer. 2012;59(2):254–7. doi: 10.1002/pbc.23365.
    1. Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG) Lancet. 2011;377(9778):1663–72. doi: 10.1016/S0140-6736(11)60355-3.
    1. Lam MS. Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs. Pharmacotherapy. 2011;31(2):164–92. doi: 10.1592/phco.31.2.164.
    1. Ballas SK, Singh P, Adams-Graves P, Wordell CJ. Idiosyncratic Side Effects of Hydroxyurea in Patients with Sickle Cell Anemia. J Blood Disorders Transf. 2013;4:5.
    1. Su ZT, Segal JB, Lanzkron S, Ogunsile FJ. National trends in hydroxyurea and opioid prescribing for sickle cell disease by office-based physicians in the United States, 1997–2017. Pharmacoepidemiol Drug Saf. 2019;28(9):1246–50. doi: 10.1002/pds.4860.
    1. Schuchard SB, Lissick JR, Nickel A, Watson D, Moquist KL, Blaylark RM, et al. Hydroxyurea use in young infants with sickle cell disease. Pediatr Blood Cancer. 2019;66(7):e27650. doi: 10.1002/pbc.27650.
    1. Thomas R, Dulman R, Lewis A, Notarangelo B, Yang E. Prospective longitudinal follow-up of children with sickle cell disease treated with hydroxyurea since infancy. Pediatr Blood Cancer. 2019;66(9):e27816. doi: 10.1002/pbc.27816.
    1. Ware RE, McGann PT, Quinn CT. Hydroxyurea for children with sickle cell anemia: Prescribe it early and often. Pediatr Blood Cancer. 2019;66(8):e27778. doi: 10.1002/pbc.27778.
    1. Creary SE, Modi AC, Stanek JR, Chisolm DJ, O’Brien SH, Nwankwo C, et al. Allocation of Treatment Responsibility and Adherence to Hydroxyurea Among Adolescents With Sickle Cell Disease. J Pediatr Psychol. 2019 doi: 10.1093/jpepsy/jsz061.
    1. Jabour SM, Beachy S, Coburn S, Lanzkron S, Eakin MN. The Role of Patient-Physician Communication on the Use of Hydroxyurea in Adult Patients with Sickle Cell Disease. J Racial Ethn Health Disparities. 2019;6(6):1233–43. doi: 10.1007/s40615-019-00625-5.
    1. Mvalo T, Topazian HM, Kamthunzi P, Chen JS, Kambalame I, Mafunga P, et al. Real-world experience using hydroxyurea in children with sickle cell disease in Lilongwe, Malawi. Pediatr Blood Cancer. 2019;66(11):e27954. doi: 10.1002/pbc.27954.
    1. Adeyemo TA, Diaku-Akinwunmi IN, Ojewunmi OO, Bolarinwa AB, Adekile AD. Barriers to the use of hydroxyurea in the management of sickle cell disease in Nigeria. Hemoglobin. 2019;43(3):188–92. doi: 10.1080/03630269.2019.1649278.
    1. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–94.
    1. Hogan AM, Vargha-Khadem F, Saunders DE, Kirkham FJ, Baldeweg T. Impact of frontal white matter lesions on performance monitoring: ERP evidence for cortical disconnection. Brain. 2006;129(Pt 8):2177–88. doi: 10.1093/brain/awl160.
    1. Pegelow CH, Macklin EA, Moser FG, Wang WC, Bello JA, Miller ST, et al. Longitudinal changes in brain magnetic resonance imaging findings in children with sickle cell disease. Blood. 2002;99(8):3014–8. doi: 10.1182/blood.V99.8.3014.
    1. el Gammal T, Adams RJ, Nichols FT, McKie V, Milner P, McKie K, et al. MR and CT investigation of cerebrovascular disease in sickle cell patients. AJNR Am J Neuroradiol. 1986;7(6):1043–9.
    1. Abboud MR, Yim E, Musallam KM, Adams RJ. Discontinuing prophylactic transfusions increases the risk of silent brain infarction in children with sickle cell disease: data from STOP II. Blood. 2011;118(4):894–8. doi: 10.1182/blood-2010-12-326298.
    1. Scantlebury N, Mabbott D, Janzen L, Rockel C, Widjaja E, Jones G, et al. White matter integrity and core cognitive function in children diagnosed with sickle cell disease. J Pediatr Hematol Oncol. 2011;33(3):163–71. doi: 10.1097/MPH.0b013e3182036f33.
    1. Wang WC, Pavlakis SG, Helton KJ, McKinstry RC, Casella JF, Adams RJ, et al. MRI abnormalities of the brain in one-year-old children with sickle cell anemia. Pediatr Blood Cancer. 2008;51(5):643–6. doi: 10.1002/pbc.21612.
    1. Ware RE, Helms RW. Stroke With Transfusions Changing to Hydroxyurea (SWiTCH) Blood. 2012;119(17):3925–32. doi: 10.1182/blood-2011-11-392340.
    1. Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B, Sarnaik S, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387(10019):661–70. doi: 10.1016/S0140-6736(15)01041-7.
    1. Kapustin D, Leung J, Odame I, Williams S, Shroff M, Kassner A. Hydroxycarbamide treatment in children with Sickle Cell Anaemia is associated with more intact white matter integrity: a quantitative MRI study. Br J Haematol. 2019;187(2):238–45. doi: 10.1111/bjh.16063.
    1. Hankins JS, McCarville MB, Rankine-Mullings A, Reid ME, Lobo CL, Moura PG, et al. Prevention of conversion to abnormal transcranial Doppler with hydroxyurea in sickle cell anemia: A Phase III international randomized clinical trial. Am J Hematol. 2015;90(12):1099–105. doi: 10.1002/ajh.24198.
    1. Sirieix ME, Debure C, Baudot N, Dubertret L, Roux ME, Morel P, et al. Leg ulcers and hydroxyurea: forty-one cases. Arch Dermatol. 1999;135(7):818–20. doi: 10.1001/archderm.135.7.818.
    1. Koshy M, Enstuah R, Koranda A. Leg ulcers in patients in sickle cell disease. Blood. 1989;74:1403–8. doi: 10.1182/blood.V74.4.1403.1403.
    1. Soya E, Makowski C, Blaise S. Leg ulcer induced by hydroxycarbamide in sickle cell disease: What is the therapeutic impact? Int Wound J. 2019;16(4):897–902. doi: 10.1111/iwj.13115.
    1. de Montalembert M, Begue P, Bernaudin F, Thuret I, Bachir D, Micheau M. Preliminary report of a toxicity study of hydroxyurea in sickle cell disease. French Study Group on Sickle Cell Disease. Arch Dis Child. 1999;81(5):437–9. doi: 10.1136/adc.81.5.437.
    1. Byrd DC, Pitts SR, Alexander CK. Hydroxyurea in two pregnant women with sickle cell anemia. Pharmacotherapy. 1999;19(12):1459–62. doi: 10.1592/phco.19.18.1459.30901.
    1. Diav-Citrin O, Hunnisett L, Sher GD, Koren G. Hydroxyurea use during pregnancy: a case report in sickle cell disease and review of the literature. Am J Hematol. 1999;60(2):148–50. doi: 10.1002/(SICI)1096-8652(199902)60:2<148::AID-AJH12>;2-I.
    1. Children’s Hospital Medical Center Cincinnati. Hydroxyurea Exposure Limiting Pregnancy and Follow-Up Lactation (HELPFUL) (NCT04093986) . [Accessed on November 18, 2019]. [Available from: ]
    1. Pistilli B, Bellettini G, Giovannetti E, Codacci-Pisanelli G, Azim HA, Jr, Benedetti G, et al. Chemotherapy, targeted agents, antiemetics and growth-factors in human milk: how should we counsel cancer patients about breastfeeding? Cancer Treat Rev. 2013;39(3):207–11. doi: 10.1016/j.ctrv.2012.10.002.
    1. Ware RE, Marahatta A, Ware JL, et al. Hydroxyurea exposure in lactation-a pharmacokinetics study (HELPS) Blood. 2018;132(Suppl 1):3677. doi: 10.1182/blood-2018-99-114142.
    1. Children’s Hospital Medical Center Cincinnati. Hydoxyurea Exposure in Lactation A Pharmacokinetics Study (HELPS) (HELPS) (NCT02990598) . [Accessed on November 18, 2019]. [Available from: ]
    1. Brosnan JT. Interorgan amino acid transport and its regulation. J Nutr. 2003;133(6 Suppl 1):2068s–72s. doi: 10.1093/jn/133.6.2068S.
    1. Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, et al. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. N Engl J Med. 2018;379(3):226–35. doi: 10.1056/NEJMoa1715971.
    1. Niihara Y, Smith WR, Stark CW. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. N Engl J Med. 2018;379(19):1880. doi: 10.1056/NEJMoa1715971.
    1. Minniti CP. l-Glutamine and the Dawn of Combination Therapy for Sickle Cell Disease. N Engl J Med. 2018;379(3):292–4. doi: 10.1056/NEJMe1800976.
    1. Emmaus Medical Inc. A Phase III Safety and Efficacy Study of L-Glutamine to Treat Sickle Cell Disease or Sickle βo-thalassemia (NCT01179217) . [Accessed on November 18, 2019]. [Available from: ]
    1. Emmaus Medical Inc. L-Glutamine Therapy for Sickle Cell Anemia and Sickle β0 Thalassemia (NCT00125788) . [Accessed on November 18, 2019]. [Available from: ]
    1. St Jude Children’s Research Hospital. Trial of Oral Glutamine in Patients with Sickle Cell Anemia (NCT00131508) ; [Accessed on November 18, 2019]. [Available from: ]
    1. Emmaus Medical Inc. ENDARI (L-glutamine oral powder) [Package insert] Torrance, CA: 2017.
    1. Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. N Engl J Med. 2017;376(5):429–39. doi: 10.1056/NEJMoa1611770.
    1. Novartis Pharmaceuticals. ADAKVEO (crizanlizumab-tmca) injection [Package insert] East Hanover, NJ: 2019.
    1. Vichinsky E, Hoppe CC, Ataga KI, Ware RE, Nduba V, El-Beshlawy A, et al. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. N Engl J Med. 2019;381(6):509–19. doi: 10.1056/NEJMoa1903212.
    1. Global Blood Therapeutics. Study to Evaluate the Effect of Voxelotor Administered Orally to Patients With Sickle Cell Disease (GBT_HOPE) (GBT_HOPE) [NCT03036813] . [Accessed on December 16, 2019]. [Available from: ]
    1. Global Blood Therapeutics. OXBRYTA (voxelotor) tablets [Package insert] San Francisco, CA: 2019.
    1. GlycoMimetics, editor. GlycoMimetics Announces Presentation of Rivipansel Data in Pediatric Patients at American Society of Pediatric Hematology Oncology 27th Annual Meeting; 2014 May 15; Palmer House Hilton Hotel, Chicago.
    1. Telen MJ, Wun T, McCavit TL, De Castro LM, Krishnamurti L, Lanzkron S, et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125(17):2656–64. doi: 10.1182/blood-2014-06-583351.
    1. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102(12):3865–70. doi: 10.1182/blood-2003-05-1738.
    1. National Heart Lung and Blood Institute (NHLBI) Decitabine for High-Risk Sickle Cell Disease (NCT01375608) . [Accessed on November 18, 2019]. [Available from: ]
    1. Molokie R, Lavelle D, Gowhari M, Pacini M, Krauz L, Hassan J, et al. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Med. 2017;14(9):e1002382. doi: 10.1371/journal.pmed.1002382.
    1. Lavelle D, Vaitkus K, Ling Y, Ruiz MA, Mahfouz R, Ng KP, et al. Effects of tetrahydrouridine on pharmacokinetics and pharmacodynamics of oral decitabine. Blood. 2012;119(5):1240–7. doi: 10.1182/blood-2011-08-371690.
    1. Yogen Saunthararajah. Study of Decitabine and Tetrahydrouridine (THU) in Patients With Sickle Cell Disease (NCT01685515) . [Accessed on November 18, 2019]. [Available from: ]
    1. Meiler SE, Wade M, Kutlar F, Yerigenahally SD, Xue Y, Moutouh-de Parseval LA, et al. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood. 2011;118(4):1109–12. doi: 10.1182/blood-2010-11-319137.
    1. Celgene. Study to Determine the Maximum Tolerated Dose, Safety and Effectiveness of Pomalidomide for Patients With Sickle Cell Disease (SCD-001) [NCT01522547] . [Accessed on November 18, 2019]. [Available from: ]
    1. Srinivas NR. Clinical pharmacokinetics of panobinostat, a novel histone deacetylase (HDAC) inhibitor: review and perspectives. Xenobiotica; the fate of foreign compounds in biological systems. 2017;47(4):354–68.
    1. Kutlar A. Study of Panobinostat (LBH589) in Patients With Sickle Cell Disease (LBH589) [NCT01245179] Clinical . [Accessed on November 18, 2019]. [Available from: ]
    1. Elias DB, Barbosa MC, Rocha LB, Dutra LL, Silva HF, Martins AM, et al. L-arginine as an adjuvant drug in the treatment of sickle cell anaemia. Br J Haematol. 2013;160(3):410–2. doi: 10.1111/bjh.12114.
    1. Chang J, Shi PA, Chiang EY, Frenette PS. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood. 2008;111(2):915–23. doi: 10.1182/blood-2007-04-084061.
    1. Albert Einstein College of Medicine. Intravenous Gammaglobulin for Sickle Cell Pain Crises (NCT01757418) . [Accessed on November 18, 2019]. [Available from: ]
    1. Qari MH, Aljaouni SK, Alardawi MS, Fatani H, Alsayes FM, Zografos P, et al. Reduction of painful vaso-occlusive crisis of sickle cell anaemia by tinzaparin in a double-blind randomized trial. Thromb Haemost. 2007;98(2):392–6. doi: 10.1160/Th06-12-0718.
    1. Kutlar A, Ataga KI, McMahon L, Howard J, Galacteros F, Hagar W, et al. A potent oral P-selectin blocking agent improves microcirculatory blood flow and a marker of endothelial cell injury in patients with sickle cell disease. Am J Hematol. 2012;87(5):536–9. doi: 10.1002/ajh.23147.
    1. Duke University. Treatment of Sickle Cell Patients Hospitalized in Pain Crisis With Prophylactic Dose Low-molecular-weight Heparin (LMWH) Versus Placebo (NCT01419977) . [Accessed November 18, 2019]. [Available from: ]
    1. Novartis Pharmaceuticals. Study of Two Doses of Crizanlizumab Versus Placebo in Adolescent and Adult Sickle Cell Disease Patients (STAND) [NCT03814746] . [Accessed on November 21, 2019]. [Available from: ]
    1. Novartis Pharmaceuticals. A Study to Evaluate the Safety and Efficacy of Crizanlizumab in Sickle Cell Disease Related Priapism (SPARTAN) [NCT03938454] . [Accessed on November 21, 2019]. [Available from: ]
    1. Novartis Pharmaceuticals. Study of Dose Confirmation and Safety of Crizanlizumab in Pediatric Sickle Cell Disease Patients (NCT03474965) . [Accessed on November 21, 2019]. [Available from: ]
    1. Novartis Pharmaceuticals. Pharmacokinetics and Pharmacodynamics Study of SEG101 (Crizanlizumab) in Sickle Cell Disease (SCD) Patients With Vaso-Occlusive Crisis (VOC) [NCT03264989] . [Accessed on November 21, 2019]. [Available from: ]
    1. De Castro LM, Zennadi R, Jonassaint JC, Batchvarova M, Telen MJ. Effect of propranolol as antiadhesive therapy in sickle cell disease. Clin Transl Sci. 2012;5(6):437–44. doi: 10.1111/cts.12005.
    1. DeCastro LM. Study of Propranolol as Anti-Adhesive Therapy in Sickle Cell Disease (SCD) [NCT01077921] . [Accessed on November 18, 2019]. [Available from: ]
    1. Field JJ, Lin G, Okam MM, Majerus E, Keefer J, Onyekwere O, et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood. 2013;121(17):3329–34. doi: 10.1182/blood-2012-11-465963.
    1. Field JJ, Majerus E, Gordeuk VR, Gowhari M, Hoppe C, Heeney MM, et al. Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. Blood Adv. 2017;1(20):1645–9. doi: 10.1182/bloodadvances.2017009613.
    1. Scheuplein F, Thariath A, Macdonald S, Truneh A, Mashal R, Schaub R. A humanized monoclonal antibody specific for invariant Natural Killer T (iNKT) cells for in vivo depletion. PLoS One. 2013;8(9):e76692. doi: 10.1371/journal.pone.0076692.
    1. Field JJ, Majerus E, Ataga KI, Vichinsky EP, Schaub R, Mashal R, et al. NNKTT120, an anti-iNKT cell monoclonal antibody, produces rapid and sustained iNKT cell depletion in adults with sickle cell disease. PLoS One. 2017;12(2):e0171067. doi: 10.1371/journal.pone.0171067.
    1. Hoppe C, Kuypers F, Larkin S, Hagar W, Vichinsky E, Styles L. A pilot study of the short-term use of simvastatin in sickle cell disease: effects on markers of vascular dysfunction. Br J Haematol. 2011;153(5):655–63. doi: 10.1111/j.1365-2141.2010.08480.x.
    1. University of North Carolina Chapel Hill. Effect of Atorvastatin on Endothelial Dysfunction and Albuminuria in Sickle Cell Disease (ENDO) [NCT01732718] . [Accessed on November 18, 2019]. [Available from: ]
    1. Children’s Hospital Medical Center Cincinnati. Trial of Zileuton CR in Children and Adults with Sickle Cell Disease. . [Accessed on November 18, 2019]. [Available from: ]
    1. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60(1):6–20. doi: 10.1007/s000180300001.
    1. Pace BS, Shartava A, Pack-Mabien A, Mulekar M, Ardia A, Goodman SR. Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol. 2003;73(1):26–32. doi: 10.1002/ajh.10321.
    1. Academisch Medisch Centrum - Universiteit van Amsterdam (AMC-UvA) N-Acetylcysteine in Patients With Sickle Cell Disease (NAC) [NCT01849016] . [Accessed on November 18, 2019]. [Available from: ]
    1. Novartis Pharmaceuticals. ILARIS (canakinumab) [Package insert] East Hanover, NJ: 2012.
    1. Novartis Pharmaceuticals. Study of Efficacy, Safety and Tolerability of ACZ885 (Canakinumab) in Pediatric and Young Adult Patients With Sickle Cell Anemia (NCT02961218) . [Accessed on December 16, 2019]. [Available from: ]
    1. Rees DC, Kilinc Y, Unal S, Dampier C, Pace BS, Kaya B, et al. Double-Blind, Randomized Study of Canakinumab Treatment in Pediatric and Young Adult Patients with Sickle Cell Anemia. Blood. 2019;134(Suppl_1):615.
    1. Gilead Sciences Inc. Letairis (ambrisentan) tablets [Package insert] Foster City, CA: 2015.
    1. Augusta University. The Role of Endothelin-1 in Sickle Cell Disease (NCT02712346) . [Accessed on December 16, 2019]. [Available from: ]
    1. Kutlar A, Pollock J, Meiler SE, Harris R, Hongyan X, Wells L, et al. Phase-I Study of ETA Receptor Antagonist Ambrisentan in Sickle Cell Disease. Blood. 2019;134(Suppl_1):617.
    1. Lal A, Atamna W, Killilea DW, Suh JH, Ames BN. Lipoic acid and acetyl-carnitine reverse iron-induced oxidative stress in human fibroblasts. Redox Rep. 2008;13(1):2–10. doi: 10.1179/135100008X259150.
    1. UCSF Benioff Children’s Hospital Oakland. Antioxidant Therapy to Reduce Inflammation in Sickle Cell Disease (NCT01054768) . [Accessed on November 18, 2019]. [Available from: ]
    1. Martins VD, Manfredini V, Peralba MC, Benfato MS. Alpha-lipoic acid modifies oxidative stress parameters in sickle cell trait subjects and sickle cell patients. Clin Nutr. 2009;28(2):192–7. doi: 10.1016/j.clnu.2009.01.017.
    1. Christen JR, Bertolino J, Jean E, Camoin L, Ebbo M, Harle JR, et al. Use of Direct Oral Anticoagulants in Patients with Sickle Cell Disease and Venous Thromboembolism: A Prospective Cohort Study of 12 Patients. Hemoglobin. 2019:1–4. doi: 10.1080/03630269.2019.1689997.
    1. Morris CR, Morris SM, Jr, Hagar W, Van Warmerdam J, Claster S, Kepka-Lenhart D, et al. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med. 2003;168(1):63–9. doi: 10.1164/rccm.200208-967OC.
    1. Morris CR, Ansari M, Lavrisha L, et al. Arginine therapy for vaso-occlusive pain episodes in sickle cell disease. Blood (ASH Annual Meeting Abstracts) 2009;114:573. doi: 10.1182/blood.V114.22.573.573.
    1. Morris CR, Kuypers FA, Lavrisha L, Ansari M, Sweeters N, Stewart M, et al. A randomized, placebo-controlled trial of arginine therapy for the treatment of children with sickle cell disease hospitalized with vaso-occlusive pain episodes. Haematologica. 2013;98(9):1375–82. doi: 10.3324/haematol.2013.086637.
    1. UCSF Benioff Children’s Hospital Oakland. Effectiveness of Arginine as a Treatment for Sickle Cell Anemia (Arginine) [NCT00513617] . [Accessed on November 18, 2019]. [Available from: ]
    1. Hospital de Clinicas de Porto Alegre. L-Arginine and Sickle Cell Disease (NCT01142219) . [Accessed on November 18, 2019]. [Available from: ]
    1. National Institutes of Health. Clinical Center. Evaluation of Hydroxyurea Plus L-arginine or Sildenafil to Treat Sickle Cell Anemia (NCT00056433) . [Accessed on November 18, 2019]. [Available from: ]
    1. UCSF Benioff Children’s Hospital Oakland. Arginine Treatment of Acute Chest Syndrome (Pneumonia) in Sickle Cell Disease Patients (NCT00029731) . [Accessed on November 18, 2019]. [Available from: ]
    1. Perrine SP. Phase II Randomized Trial:Arginine Butyrate Plus Standard Local Therapy in Patients With Refractory Sickle Cell Ulcers (NCT00004412) . [Accessed on November 18, 2019]. [Available from: ]
    1. Gladwin MT, Kato GJ, Weiner D, Onyekwere OC, Dampier C, Hsu L, et al. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA. 2011;305(9):893–902. doi: 10.1001/jama.2011.235.
    1. Lopez BL, Davis-Moon L, Ballas SK, Ma XL. Sequential nitric oxide measurements during the emergency department treatment of acute vasoocclusive sickle cell crisis. Am J Hematol. 2000;64(1):15–9. doi: 10.1002/(SICI)1096-8652(200005)64:1<15::AID-AJH3>;2-P.
    1. Head CA, Swerdlow P, McDade WA, Joshi RM, Ikuta T, Cooper ML, et al. Beneficial effects of nitric oxide breathing in adult patients with sickle cell crisis. Am J Hematol. 2010;85(10):800–2. doi: 10.1002/ajh.21832.
    1. Ikuta T, Thatte HS, Tang JX, Mukerji I, Knee K, Bridges KR, et al. Nitric oxide reduces sickle hemoglobin polymerization: potential role of nitric oxide-induced charge alteration in depolymerization. Arch Biochem Biophys. 2011;510(1):53–61. doi: 10.1016/j.abb.2011.03.013.
    1. Pfizer. Safety, Tolerability, Pharmacokinetics, And Pharmacodynamics Study Of PF-04447943, Co-Administered With And Without Hydroxyurea, In Subjects With Stable Sickle Cell Disease (NCT02114203) . [Accessed on November 18, 2019]. [Available from: ]
    1. Charnigo RJ, Beidler D, Rybin D, Pittman DD, Tan B, Howard J, et al. PF-04447943, a Phosphodiesterase 9A Inhibitor, in Stable Sickle Cell Disease Patients: A Phase Ib Randomized, Placebo-Controlled Study. Clin Transl Sci. 2019;12(2):180–8. doi: 10.1111/cts.12604.
    1. Singh N, Patra S. Phosphodiesterase 9: insights from protein structure and role in therapeutics. Life Sci. 2014;106(1–2):1–11. doi: 10.1016/j.lfs.2014.04.007.
    1. Imara Inc. An Extension Study of IMR-687 in Adult Patients With Sickle Cell Anemia (NCT04053803) . [Accessed on November 22, 2019]. [Available from: ]
    1. Kato GJ. A Multi-Center Study of Riociguat in Patients With Sickle Cell Diseases (NCT02633397) . [Accessed on November 22, 2019]. [Available from: ]
    1. Cyclerion Therpeutics. A Study of the Effect of IW-1701 (Olinciguat), a Stimulator of Soluble Guanylate Cyclase (sGC), on Patients With Sickle Cell Disease (SCD) (STRONG SCD) [NCT03285178] . [Accessed on November 22, 2019]. [Available from: ]
    1. Eaton WA, Bunn HF. Treating sickle cell disease by targeting HbS polymerization. Blood. 2017;129(20):2719–26. doi: 10.1182/blood-2017-02-765891.
    1. Geng X, Dufu K, Hutchaleelaha A, Xu Q, Li Z, Li CM, et al. Increased hemoglobin-oxygen affinity ameliorates bleomycin-induced hypoxemia and pulmonary fibrosis. Physiological reports. 2016;4(17) doi: 10.14814/phy2.12965.
    1. Howard J, Hemmaway CJ, Telfer P, Layton DM, Porter J, Awogbade M, et al. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood. 2019;133(17):1865–75. doi: 10.1182/blood-2018-08-868893.
    1. Forma Therapeutics Inc. A SAD/MAD to Assess the Safety, Pharmacokinetics and Pharmacodynamics of FT-4202 in Healthy Volunteers and Sickle Cell Disease Patients (NCT03815695) . [Accessed on December 16, 2019]. [Available from: ]
    1. Kalfa TA, Kuypers FA, Telen MJ, Malik P, Konstantinidis DG, Estepp JH, et al. Phase 1 Single (SAD) and Multiple Ascending Dose (MAD) Studies of the Safety, Tolerability, Pharmacokinetics (PK) and Pharmacodynamics (PD) of FT-4202, an Allosteric Activator of Pyruvate Kinase-R, in Healthy and Sickle Cell Disease Subjects. Blood. 2019;134(Suppl_1):616.
    1. National Heart Lung and Blood Institute (NHLBI) Niacin to Improve Blood Flow in People With Sickle Cell Disease (NCT00508989) . [Accessed on November 18, 2019]. [Available from: ]
    1. Icahn School of Medicine at Mount Sinai. Vitamin D3 in Patients With Sickle Cell Disease (NCT03012555) . [Accessed on November 18, 2019]. [Available from: ]
    1. Soe HH, Abas AB, Than NN, Ni H, Singh J, Said AR, et al. Vitamin D supplementation for sickle cell disease. Cochrane Database Syst Rev. 2017;1:Cd010858. doi: 10.1002/14651858.CD010858.pub2.
Table References
    1. Greenberg J, Ohene-Frempong K, Halus J, Way C, Schwartz E. Trial of low doses of aspirin as prophylaxis in sickle cell disease. J Pediatr. 1983;102(5):781–4. doi: 10.1016/S0022-3476(83)80258-3.
    1. Baxalta now part of Shire. A Single Dose Study of the Safety, Blood Levels and Biological Effects of Aes-103 Compared to Placebo in Subjects With Stable Sickle Cell Disease (NCT01597401) . [Accessed on November 18, 2019]. [Available from: ]
    1. Xu GG, Pagare PP, Ghatge MS, Safo RP, Gazi A, Chen Q, et al. Design, Synthesis, and Biological Evaluation of Ester and Ether Derivatives of Antisickling Agent 5-HMF for the Treatment of Sickle Cell Disease. Mol Pharm. 2017;14(10):3499–511. doi: 10.1021/acs.molpharmaceut.7b00553.
    1. Joiner CH, Jiang M, Claussen WJ, Roszell NJ, Yasin Z, Franco RS. Dipyridamole inhibits sickling-induced cation fluxes in sickle red blood cells. Blood. 2001;97(12):3976–83. doi: 10.1182/blood.V97.12.3976.
    1. Desai PC, Brittain JE, Jones SK, McDonald A, Wilson DR, Dominik R, et al. A pilot study of eptifibatide for treatment of acute pain episodes in sickle cell disease. Thromb Res. 2013;132(3):341–5. doi: 10.1016/j.thromres.2013.08.002.
    1. HemaQuest Pharmaceuticals Inc. A Study of HQK-1001 in Patients With Sickle Cell Disease (NCT01322269) . [Accessed on November 18, 2019]. [Available from: ]
    1. Gladwin MT, Kato GJ, Weiner D, Onyekwere OC, Dampier C, Hsu L, et al. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA. 2011;305(9):893–902. doi: 10.1001/jama.2011.235.
    1. Waugh WH, Daeschner CW, 3rd, Files BA, McConnell ME, Strandjord SE. Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results. J Natl Med Assoc. 2001;93(10):363–71.
    1. Brousseau DC, Scott JP, Badaki-Makun O, Darbari DS, Chumpitazi CE, Airewele GE, et al. A multicenter randomized controlled trial of intravenous magnesium for sickle cell pain crisis in children. Blood. 2015;126(14):1651–7. doi: 10.1182/blood-2015-05-647107.
    1. Belcher JD, Young M, Chen C, Nguyen J, Burhop K, Tran P, et al. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice. Blood. 2013;122(15):2757–64. doi: 10.1182/blood-2013-02-486282.
    1. Sangart. Phase 2 Study of MP4CO to Treat Vaso-occlusive Sickle Crisis (NCT01925001) . [Accessed on November 18, 2019]. [Available from: ]
    1. Orringer EP, Casella JF, Ataga KI, Koshy M, Adams-Graves P, Luchtman-Jones L, et al. Purified poloxamer 188 for treatment of acute vaso-occlusive crisis of sickle cell disease: A randomized controlled trial. JAMA. 2001;286(17):2099–106. doi: 10.1001/jama.286.17.2099.
    1. Ballas SK, Files B, Luchtman-Jones L, Benjamin L, Swerdlow P, Hilliard L, et al. Safety of purified poloxamer 188 in sickle cell disease: phase I study of a non-ionic surfactant in the management of acute chest syndrome. Hemoglobin. 2004;28(2):85–102. doi: 10.1081/HEM-120035919.
    1. Mast Therapeutics Inc. Phase III Randomized Study of Poloxamer 188 for Vaso-Occlusive Crisis of Sickle Cell Disease (NCT00004408) . [Accessed on November 18, 2019]. [Available from: ]
    1. Daak AA, Ghebremeskel K, Hassan Z, Attallah B, Azan HH, Elbashir MI, et al. Effect of omega-3 (n-3) fatty acid supplementation in patients with sickle cell anemia: randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2013;97(1):37–44. doi: 10.3945/ajcn.112.036319.
    1. Miller RE. Omega-3 Fatty Acids in Sickle Cell Disease (NCT02947100) . [Accessed on November 18, 2019]. [Available from: ]
    1. Heeney MM, Hoppe CC, Abboud MR, Inusa B, Kanter J, Ogutu B, et al. A Multinational Trial of Prasugrel for Sickle Cell Vaso-Occlusive Events. N Engl J Med. 2016;374(7):625–35. doi: 10.1056/NEJMoa1512021.
    1. Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, et al. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043) Br J Haematol. 2011;153(1):92–104. doi: 10.1111/j.1365-2141.2010.08520.x.
    1. Icagen. A Study Evaluating the Long-Term Safety of ICA-17043 in Sickle Cell Disease Patients With or Without Hydroxyurea Therapy (NCT00294541) . [Accessed on November 18, 2019]. [Available from: ]
    1. Machado RF, Martyr S, Kato GJ, Barst RJ, Anthi A, Robinson MR, et al. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol. 2005;130(3):445–53. doi: 10.1111/j.1365-2141.2005.05625.x.
    1. Machado RF, Barst RJ, Yovetich NA, Hassell KL, Kato GJ, Gordeuk VR, et al. Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood. 2011;118(4):855–64. doi: 10.1182/blood-2010-09-306167.
    1. Montefiore Medical Center. Topical Sodium Nitrite in Sickle Cell Disease and Leg Ulcers (NCT02863068) . [Accessed on November 18, 2019]. [Available from: ]
    1. TRF Pharma Inc. TRF-1101 Assessment in Sickle Cell Disease (NCT00773890) . [Accessed on November 18, 2019]. [Available from: ]
    1. Anthera Pharmaceuticals. A Study of Varespladib Infusion in Subjects With Sickle Cell Disease. (IMPACTS-2) [NCT01522196] . [Accessed on November 18, 2019]. [Available from: ]
    1. Mast Therapeutics Inc. Evaluation of Purified Poloxamer 188 in Vaso-Occlusive Crisis of Sickle Cell Disease (EPIC) [NCT01737814] . [Accessed on November 18, 2019]. [Available from: ]
    1. Dana-Faber Cancer Institute. Efficacy of Vorinostat to Induce Fetal Hemoglobin in Sickle Cell Disease (NCT01000155) . [Accessed on November 18, 2019]. [Available from: ]
    1. Modus Therapeutics AB. Sevuparin Infusion for the Management of Acute VOC in Subjects With SCD (NCT02515838) . [Accessed on November 18, 2019]. [Available from: ]
    1. Kutlar A, Embury SH. Cellular adhesion and the endothelium: P-selectin. Hematol Oncol Clin North Am. 2014;28(2):323–39. doi: 10.1016/j.hoc.2013.11.007.
    1. Pfizer. Efficacy and Safety of Rivipansel (GMI-1070) in the Treatment of Vaso-Occlusive Crisis in Hospitalized Subjects With Sickle Cell Disease (NCT02187003) . [Accessed on November 18, 2019]. [Available from: ]
    1. Prolong Pharmaceuticals. Study of SANGUINATE™ In the Treatment of Sickle Cell Disease Patients With Vaso-Occlusive Crisis (NCT02411708) . [Accessed on November 18, 2019]. [Available from: ]

Source: PubMed

3
Prenumerera