Deep Lateral Wall Partial Rim-Sparing Orbital Decompression with Ultrasonic Bone Removal for Treatment of Thyroid-Related Orbitopathy

Álvaro Bengoa-González, Alicia Galindo-Ferreiro, Enrique Mencía-Gutiérrez, Hortensia Sánchez-Tocino, Agustín Martín-Clavijo, María-Dolores Lago-Llinás, Álvaro Bengoa-González, Alicia Galindo-Ferreiro, Enrique Mencía-Gutiérrez, Hortensia Sánchez-Tocino, Agustín Martín-Clavijo, María-Dolores Lago-Llinás

Abstract

Purpose: To describe the results of thyroid-related orbitopathy (TRO) treated by ultrasonic deep lateral wall bony decompression with partial rim sparing (DLW-PRS).

Methods: A review was carried out, from January 2015 to September 2017, of all patients treated with ultrasonic DLW-PRS decompression using a SONOPET® (Stryker, Kalamazoo, MI, USA) ultrasonic aspirator, using a lateral, small triangle flap incision for access. The primary outcome was the change in proptosis (measured by the difference in Hertel exophthalmometry measurements). Other secondary outcomes were changes in visual acuity (VA) (using Snellen scale, decimal fraction), presence of lagophthalmos, eyelid retraction (measured by upper eyelid margin distance to the corneal reflex (MRD1) and lower eyelid margin distance to the corneal reflex (MRD2), and presence of exposure keratopathy).

Results: A total of 58 orbital decompressions in 35 patients were reviewed, with 23 patients (65.7%) having bilateral decompressions. There was a female preponderance with 26 patients (74.2%), and the mean age ± standard deviation was 52.6 ± 13.9 years. Mean proptosis was 24.51 ± 1.76 mm preoperatively, reduced to 19.61 ± 1.27 mm in final follow-up. The mean reduction was 4.9 ± 1.54 mm. VA improved from 0.8 ± 0.14 to 0.9 ± 0.12, p=0.039. 5 of 13 patients (38.4%) with preoperative diplopia reported improvement or complete resolution after surgery. MRD1 was reduced from 5.25 ± 0.88 mm to 4.49 ± 0.7 mm. MRD2 was also reduced from 6.3 ± 0.88 mm to 5.0 ± 0.17 mm. Presence of lagophthalmos was reduced from 35 eyes (60.3%) to five (8.6%); the presence of epiphora was also reduced from 20 patients (57.1%) to 3 (8.5%) following decompression. Complications of the surgery included zygomatic hypoaesthesia in 14 (40%) patients in the early postoperative period and chewing alterations in 10 (28.5%) of the patients. All of these complications were resolved at the 6-month follow-up visit. We noted no surgical complications such as ocular or soft tissue damage, infection, inflammation, or visual loss.

Conclusions: The SONOPET® ultrasonic bone curette can be used safely and effectively for DLW orbital decompression surgery. The main benefits were good visualization and handling of tissues and speed and ease of use of the equipment. This trial is registered with ClinicalTrials.gov identifier: NCT04025034.

Conflict of interest statement

The authors received financial support for this study but have no financial or proprietary interest in the materials presented in this study. The authors have no commercial associations that might be perceived as a conflict of interest in connection with the article.

Copyright © 2019 Álvaro Bengoa-González et al.

Figures

Figure 1
Figure 1
The triangular incision along the eyelid crease (a) allows excellent exposure of the orbital rim (b). The exposed lateral wall (c). The serrated aggressive knife used for osteotomies (d). The plastic irrigation sleeve on the ultrasonic tip prevents thermal damage to the skin and soft tissues. Full-thickness osteotomy made 5 mm posterior and parallel to the lateral orbital rim with the aggressive serrated knife tip, extending from the level of the orbital roof to the floor and a second full-thickness back-cut placed above the zygomatic arch (e).
Figure 2
Figure 2
(a) Superlong Payner 360° used for trigone removal. (b) The deep lateral wall to the trigone is removed. The image shows the intact orbital rim and bony window following osteotomy. (c) Prolapse of the lacrimal gland and orbital fat in the newly opened 623 bony spaces. (d) The incision is closed in layers and vacuum drain inserted. (e) 1 year after surgery, the scar is almost invisible.
Figure 3
Figure 3
(a) Patient before surgery and (b) following decompression showing a reduction of proptosis and palpebral fissure. (c) Orbital computed tomography (CT) before surgery. The arrows show the extent of the lateral wall which will be removed to create a full-thickness bony window. (d) Postsurgery orbital CT showing a reduction of exophthalmos. It also illustrates the preservation of the orbital rim, removal of the lateral wall and sphenoidal trigone (arrow), and the soft tissue prolapse into the newly created spaces (e) and postoperative three-dimensional CT reconstruction (f).

References

    1. Bartalena L., Pinchera A., Marcocci C. Management of graves’ ophthalmopathy: reality and perspectives. Endocrine Reviews. 2000;21(2):168–199. doi: 10.1210/er.21.2.168.
    1. Bahn R. S. Graves’ophthalmopathy. New England Journal of Medicine. 2010;362(8):726–738. doi: 10.1056/nejmra0905750.
    1. Hiromatsu Y., Eguchi H., Tani J., Kasaoka M., Teshima Y. Graves’ ophthalmopathy: epidemiology and natural history. Internal Medicine. 2014;53(5):353–360. doi: 10.2169/internalmedicine.53.1518.
    1. Smith T. J., Hegedüs L. Graves’ disease. New England Journal of Medicine. 2016;375(16):1552–1565. doi: 10.1056/nejmra1510030.
    1. Mehta P., Durrani O. M. Outcome of deep lateral wall rim-sparing orbital decompression in thyroid-associated orbitopathy: a new technique and results of a case series. Orbit. 2011;30(6):265–268. doi: 10.3109/01676830.2011.603456.
    1. Sagiv O., Satchi K., Kinori M., et al. Comparison of lateral orbital decompression with and without rim repositioning in thyroid eye disease. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2016;254(4):791–796. doi: 10.1007/s00417-015-3237-2.
    1. Baldeschi L., MacAndie K., Hintschich C., Wakelkamp I. M., Prummel M. F., Wiersinga W. M. The removal of the deep lateral wall in orbital decompression: its contribution to exophthalmos reduction and influence on consecutive diplopia. American Journal of Ophthalmology. 2005;140(4):642–647. doi: 10.1016/j.ajo.2005.04.023.
    1. Fichter N., Schittkowski M. P., Vick H. P., Guthoff R. F. Laterale knöcherne orbitadekompression bei endokriner orbitopathie. Der Ophthalmologe. 2004;101(4):339–349. doi: 10.1007/s00347-004-1008-2.
    1. Fichter N., Krentz H., Guthoff R. F. Functional and esthetic outcome after bony lateral wall decompression with orbital rim removal and additional fat resection in graves’ orbitopathy with regard to the configuration of the lateral canthal region. Orbit. 2013;32(4):239–246. doi: 10.3109/01676830.2013.788662.
    1. Fichter N., Guthoff R. F. Results after en bloc lateral wall decompression surgery with orbital fat resection in 111 patients with graves’ orbitopathy. International Journal of Endocrinology. 2015;2015:9. doi: 10.1155/2015/860849.860849
    1. Choi S. U., Kim K. W., Lee J. K. Surgical outcomes of balanced deep lateral and medial orbital wall decompression in Korean population: clinical and computed tomography-based analysis. Korean Journal of Ophthalmology. 2016;30(2):85–91. doi: 10.3341/kjo.2016.30.2.85.
    1. Siah W. F., Patel B. C., Malhotra R. Surgical management of temple-related problems following lateral wall rim-sparing orbital decompression for thyroid-related orbitopathy. British Journal of Ophthalmology. 2016;100(8):1144–1150. doi: 10.1136/bjophthalmol-2015-307600.
    1. Paridaens D. A., Verhoeff K., Bouwens D., van Den Bosch W. A. Transconjunctival orbital decompression in Graves’ ophthalmopathy: lateral wall approach ab interno. British Journal of Ophthalmology. 2000;84(7):775–781. doi: 10.1136/bjo.84.7.775.
    1. Paridaens D., Lie A., Grootendorst R. J., van den Bosch W. A. Efficacy and side effects of ‘swinging eyelid’ orbital decompression in Graves’ orbitopathy: a proposal for standardized evaluation of diplopia. Eye. 2006;20(2):154–162. doi: 10.1038/sj.eye.6701827.
    1. Liao S.-L., Lin L. L.-K., Shih M.-J., Chang T.-C. Transforniceal lateral deep bone decompression—a modified technique to prevent postoperative diplopia in patients with disfiguring exophthalmos due to dysthyroid orbitopathy. Journal of the Formosan Medical Association. 2006;105(8):611–616. doi: 10.1016/s0929-6646(09)60159-5.
    1. Nemet A., Martin P. The lateral triangle flap—a new approach for lateral orbitotomy. Orbit. 2007;26(2):89–95. doi: 10.1080/01676830600974571.
    1. Pieroni Goncalves A. C., Gupta S., Monteiro M. L. R., Douglas R. S. Customized minimally invasive orbital decompression surgery improves lower eyelid retraction and contour in thyroid eye disease. Ophthalmic Plastic and Reconstructive Surgery. 2017;33(6):446–451. doi: 10.1097/iop.0000000000000825.
    1. Goldberg R. A., Kim A. J., Kerivan K. M. The lacrimal keyhole, orbital door jamb, and basin of the inferior orbital fissure. Archives of Ophthalmology. 1998;116(12):1618–1624. doi: 10.1001/archopht.116.12.1618.
    1. Cho R. I., Choe C. H., Elner V. M. Ultrasonic bone removal versus high-speed burring for lateral orbital decompression: comparison of surgical outcomes for the treatment of thyroid eye disease. Ophthalmic Plastic & Reconstructive Surgery. 2010;26(2):83–87. doi: 10.1097/iop.0b013e3181b8e614.
    1. Chang E. L., Piva A. P. Temporal fossa orbital decompression for treatment of disfiguring thyroid-related orbitopathy. Ophthalmology. 2008;115(9):1613–1619. doi: 10.1016/j.ophtha.2008.02.024.
    1. Bengoa-González Á., Laslӑu B. M., Martín-Clavijo A., Mencía-Gutiérrez E., Salvador E., Lago-Llinás M. D. Deep lateral rim-sparing orbital wall decompression in spontaneous globe subluxation associated with shallow orbits and eyelids laxity. Orbit. 2019:1–7. doi: 10.1080/01676830.2019.1648521.
    1. Chappell M. C., Moe K. S., Chang S.-H. Learning curve for use of the sonopet ultrasonic aspirator in endoscopic dacryocystorhinostomy. Orbit. 2014;33(4):270–275. doi: 10.3109/01676830.2014.904377.
    1. Zhang S., Li Y., Wang Y., et al. Comparison of rim-sparing versus rim-removal techniques in deep lateral wall orbital decompression for Graves’ orbitopathy. International Journal of Oral and Maxillofacial Surgery. 2019;48(4):461–467. doi: 10.1016/j.ijom.2018.08.016.
    1. Sivak-Callcott J. A., Linberg J. V., Patel S. Ultrasonic bone removal with the sonopet omni. Archives of Ophthalmology. 2005;123(11):1595–1597. doi: 10.1001/archopht.123.11.1595.
    1. Mourits M. P., Prummel M. F., Wiersinga W. M., Koornneef L. Clinical activity score as a guide in the management of patients with Graves’s ophthalmopathy. Clinical Endocrinology. 1997;47(1):9–14. doi: 10.1046/j.1365-2265.1997.2331047.x. Erratum in: Clinical Endocrinology (Oxf)
    1. Migliori M. E., Gladstone G. J. Determination of the normal range of exophthalmometric values for black and white adults. American Journal of Ophthalmology. 1984;98(4):438–442. doi: 10.1016/0002-9394(84)90127-2.
    1. Vrcek I., Starks V., Mancini R., Gilliland G. Use of an ultrasonic bone curette (Sonopet) in orbital and oculoplastic surgery. Baylor University Medical Center Proceedings. 2015;28(1):91–93. doi: 10.1080/08998280.2015.11929203.
    1. Samy R. N., Krishnamoorthy K., Pensak M. L. Use of a novel ultrasonic surgical system for decompression of the facial nerve. The Laryngoscope. 2007;117(5):872–875. doi: 10.1097/mlg.0b013e318033f984.
    1. Rastelli M., Jr., Pinheiro-Neto C., Wang E., Snyderman C., Gardner P., Fernandez-Miranda J. Application of ultrasonic bone curette in endoscopic endonasal skull base surgery: technical note. Journal of Neurological Surgery Part B: Skull Base. 2014;75(2):090–095. doi: 10.1055/s-0033-1354580.
    1. Wu W., Selva D., Bian Y., et al. Endoscopic medial orbital fat decompression for proptosis in type 1 graves orbitopathy. American Journal of Ophthalmology. 2015;159(2):277–284. doi: 10.1016/j.ajo.2014.10.029.
    1. Alper M. G. Pioneers in the history of orbital decompression for graves’ ophthalmopathy. Documenta Ophthalmologica. 1995;89(1-2):163–171. doi: 10.1007/bf01203409.
    1. Spalthoff S., Jehn P., Zimmerer R., Rana M., Gellrich N.-C., Dittmann J. Modified lateral orbital wall decompression in graves’ orbitopathy using computer-assisted planning. International Journal of Oral and Maxillofacial Surgery. 2018;47(2):167–174. doi: 10.1016/j.ijom.2017.10.009.
    1. Nagase D. Y., Courtemanche D. J., Peters D. A. Plate removal in traumatic facial fractures. Annals of Plastic Surgery. 2005;55(6):608–611. doi: 10.1097/01.sap.0000189666.13860.c0.
    1. Ueland H. O., Haugen O. H., Rødahl E. Temporal hollowing and other adverse effects after lateral orbital wall decompression. Acta Ophthalmologica. 2016;94(8):793–797. doi: 10.1111/aos.13135.
    1. Takahashi Y., Kang H., Kakizaki H. Lower incidence of chemosis with the Berke incision approach versus the swinging eyelid approach after deep lateral orbital wall decompression. Journal of Plastic Surgery and Hand Surgery. 2016;50(1):15–18. doi: 10.3109/2000656x.2015.1064821.
    1. Robiony M., Polini F., Costa F., Zerman N., Politi M. Ultrasonic bone cutting for surgically assisted rapid maxillary expansion (SARME) under local anaesthesia. International Journal of Oral and Maxillofacial Surgery. 2007;36(3):267–269. doi: 10.1016/j.ijom.2006.08.013.
    1. Hadeishi H., Suzuki A., Yasui N., Satou Y. Anterior clinoidectomy and opening of the internal auditory canal using an ultrasonic bone curette. Neurosurgery. 2003;52(4):867–871. doi: 10.1227/01.neu.0000053147.67715.58.
    1. Nakase H., Matsuda R., Shin Y., Park Y. S., Sakaki T. The use of ultrasonic bone curettes in spinal surgery. Acta Neurochirurgica (Wien) 2006;148(2):207–212. doi: 10.1007/s00701-005-0655-7.
    1. Thapa S., Gupta A. K., Gupta A., Gupta V., Dutta P P., Virk R. S. Proptosis reduction by clinical vs radiological modalities and medial vs inferomedial approaches: comparison following endoscopic transnasal orbital decompression in patients with dysthyroid orbitopathy. JAMA Otolaryngology, Head and Neck Surgery. 2015;141(4):329–334. Erratum in: JAMA Otolaryngology, Head and Neck Surgery.
    1. Liao S.-L., Huang S.-W. Correlation of retrobulbar volume change with resected orbital fat volume and proptosis reduction after fatty decompression for graves ophthalmopathy. American Journal of Ophthalmology. 2011;151(3):465–469. doi: 10.1016/j.ajo.2010.08.042.
    1. Garrity J. A. Orbital lipectomy (fat decompression) for thyroid eye disease: an operation for everyone? American Journal of Ophthalmology. 2011;151(3):399–400. doi: 10.1016/j.ajo.2010.10.036.
    1. Lee K. H., Jang S. Y., Lee S. Y., Yoon J. S. Graded decompression of orbital fat and wall in patients with graves’ orbitopathy. Korean Journal of Ophthalmology. 2014;28(1):1–11. doi: 10.3341/kjo.2014.28.1.1.
    1. Adenis J. P., Camezind P., Robert P.-Y. La diplopie est-elle un facteur déterminant du choix de la technique de décompression orbitaire au cours de l’orbitopathie dysthyroidienne? Bulletin de l’Académie Nationale de Médecine. 2003;187(9):1649–1660. doi: 10.1016/s0001-4079(19)33857-9.
    1. Ediriwickrema L. S., Korn B. S., Kikkawa D. O. Orbital decompression for thyroid-related orbitopathy during the quiescent phase. Ophthalmic Plastic and Reconstructive Surgery. 2018;34(4):S90–S97.
    1. Chang E. L., Bernardino C. R., Rubin P. A. Normalization of upper eyelid height and contour after bony decompressionin thyroid-related ophthalmopathy: a digital image analysis. Archives of Ophthalmology. 2004;122(12):1882–1885. doi: 10.1001/archopht.122.12.1882.
    1. Ben Simon G. J., Wang L., McCann J. D., Goldberg R. A. Primary-gaze diplopia in patients with thyroid-related orbitopathy undergoing deep lateral orbital decompression with intraconal fat debulking: a retrospective analysis of treatment outcome. Thyroid. 2004;14(5):379–383. doi: 10.1089/105072504774193221.
    1. Mainville N. P., Jordan D. R. Effect of orbital decompression on diplopia in thyroid-related orbitopathy. Ophthalmic Plastic and Reconstructive Surgery. 2014;30(2):137–140. doi: 10.1097/iop.0000000000000029.
    1. Goldberg R. A., Perry J. D., Hortaleza V., Tong J. T. Strabismus after balanced medial plus lateral wall versus lateral wall only orbital decompression for dysthyroid orbitopathy. Ophthalmic Plastic and Reconstructive Surgery. 2000;16(4):271–277. doi: 10.1097/00002341-200007000-00004.
    1. Fayers T., Barker L. E., Verity D. H., Rose G. E. Oscillopsia after lateral wall orbital decompression. Ophthalmology. 2013;120(9):1920–1923. doi: 10.1016/j.ophtha.2013.01.063.
    1. Ünal M., Ileri F., Konuk O., Hasanreisogglu B. Balanced orbital decompression in Graves’ orbitopathy: upper eyelid crease incision for extended lateral wall decompression. Orbit. 2000;19(2):109–117. doi: 10.1076/0167-6830(200006)1921-pft109.
    1. Bailey K. L., Tower R. N., Dailey R. A. Customized, single-incision, three-wall orbital decompression. Ophthalmic Plastic & Reconstructive Surgery. 2005;21(1):1–9. doi: 10.1097/01.iop.0000150410.30992.c3.
    1. Leonetti J., Anderson D., Marzo S., Moynihan G. Cerebrospinal fluid fistula after transtemporal skull base surgery. Otolaryngology-Head and Neck Surgery. 2001;124(5):511–514. doi: 10.1067/mhn.2001.115089.
    1. Rootman D. B. Orbital decompression for thyroid eye disease. Survey of Ophthalmology. 2018;63(1):86–104. doi: 10.1016/j.survophthal.2017.03.007.
    1. Ramesh S., Nobori A., Wang Y., Rootman D., Goldberg R. A. Orbital expansion in cranial vault after minimally invasive extradural transorbital decompression for thyroid orbitopathy. Ophthalmic Plastic and Reconstructive Surgery. 2019;35(1):17–21. doi: 10.1097/iop.0000000000001124.
    1. Chang H. S., Joko M., Song J. S., Ito K., Inoue T., Nakagawa H. Ultrasonic bone curettage for optic canal unroofing and anterior clinoidectomy. Journal of Neurosurgery. 2006;104(4):621–624. doi: 10.3171/jns.2006.104.4.621.

Source: PubMed

3
Prenumerera