Acupuncture effect and central autonomic regulation

Qian-Qian Li, Guang-Xia Shi, Qian Xu, Jing Wang, Cun-Zhi Liu, Lin-Peng Wang, Qian-Qian Li, Guang-Xia Shi, Qian Xu, Jing Wang, Cun-Zhi Liu, Lin-Peng Wang

Abstract

Acupuncture is a therapeutic technique and part of traditional Chinese medicine (TCM). Acupuncture has clinical efficacy on various autonomic nerve-related disorders, such as cardiovascular diseases, epilepsy, anxiety and nervousness, circadian rhythm disorders, polycystic ovary syndrome (PCOS) and subfertility. An increasing number of studies have demonstrated that acupuncture can control autonomic nerve system (ANS) functions including blood pressure, pupil size, skin conductance, skin temperature, muscle sympathetic nerve activities, heart rate and/or pulse rate, and heart rate variability. Emerging evidence indicates that acupuncture treatment not only activates distinct brain regions in different kinds of diseases caused by imbalance between the sympathetic and parasympathetic activities, but also modulates adaptive neurotransmitter in related brain regions to alleviate autonomic response. This review focused on the central mechanism of acupuncture in modulating various autonomic responses, which might provide neurobiological foundations for acupuncture effects.

Figures

Figure 1
Figure 1
Acupuncture autonomic regulation mechanism. Blue indicates the area involved in acupuncture parasympathetic regulation. Orange indicates the area involved in acupuncture sympathetic regulation.

References

    1. Huang W, Kutner N, Bliwise DL. Autonomic activation in insomnia: the case for acupuncture. Journal of Clinical Sleep Medicine. 2011;7(1):95–102.
    1. NIH Consensus Conference. Acupuncture. The Journal of the American Medical Association. 1998;280(17):1518–1524.
    1. Takahashi T. Mechanism of acupuncture on neuromodulation in the gut—a review. Neuromodulation. 2011;14(1):8–12.
    1. Zhang JL, Zhang SP, Zhang HQ. Antiepileptic effect of electroacupuncture versus vagus nerve stimulation in the rat thalamus. Neuroscience Letters. 2008;441(2):183–187.
    1. Stener-Victorin E, Jedel E, Janson PO, Sverrisdottir YB. Low-frequency electroacupuncture and physical exercise decrease high muscle sympathetic nerve activity in polycystic ovary syndrome. The American Journal of Physiology. 2009;297(2):R387–R395.
    1. Vickland V, Rogers C, Craig A, Tran Y. Anxiety as a factor influencing physiological effects of acupuncture. Complementary Therapies in Clinical Practice. 2009;15(3):124–128.
    1. Wu JH, Chen HY, Chang YJ, et al. Study of autonomic nervous activity of night shift workers treated with laser acupuncture. Photomedicine and Laser Surgery. 2009;27(2):273–279.
    1. Imai K, Ariga H, Takahashi T. Electroacupuncture improves imbalance of autonomic function under restraint stress in conscious rats. The American Journal of Chinese Medicine. 2009;37(1):45–55.
    1. Bäcker M, Schaefer F, Siegler N, et al. Impact of stimulation dose and personality on autonomic and psychological effects induced by acupuncture. Autonomic Neuroscience. 2012;170(1-2):48–55.
    1. Tachibana K, Ueki N, Uchida T, Koga H. Randomized comparison of the therapeutic effect of acupuncture, massage, and Tachibana-style-method on stiff shoulders by measuring muscle firmness, VAS, pulse, and blood pressure. Evidence-Based Complementary and Alternative Medicine. 2012;2012:7 pages.989705
    1. Jones AYM, Kwan YL, Leung NTF, Yu RPW, Wu CMY, Warburton DER. Electrical stimulation of acupuncture points and blood pressure responses to postural changes: a pilot study. The American Journal of Critical Care. 2011;20(3):e67–e74.
    1. Ohsawa H, Yamaguchi S, Ishimaru H, Shimura M, Sato Y. Neural mechanism of pupillary dilation elicited by electro-acupuncture stimulation in anesthetized rats. Journal of the Autonomic Nervous System. 1997;64(2-3):101–106.
    1. Hsu CC, Weng CS, Liu TS, Tsai YS, Chang YH. Effects of electrical acupuncture on acupoint BL15 evaluated in terms of heart rate variability, pulse rate variability and skin conductance response. The American Journal of Chinese Medicine. 2006;34(1):23–36.
    1. Agarwal-Kozlowski K, Lange AC, Beck H. Contact-free infrared thermography for assessing effects during acupuncture: a randomized, single-blinded, placebo-controlled crossover clinical trial. Anesthesiology. 2009;111(3):632–639.
    1. Haker E, Egekvist H, Bjerring P. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. Journal of the Autonomic Nervous System. 2000;79(1):52–59.
    1. Hsieh CL, Lin JG, Li TC, Chang QY. Changes of pulse rate and skin temperature evoked by electroacupuncture stimulation with different frequency on both Zusanli acupoints in humans. The American Journal of Chinese Medicine. 1999;27(1):11–18.
    1. Litscher G, Wang LP, Wang L, Liu CZ, Wang XM. Sino-European transcontinental basic and clinical high-tech acupuncture studies-part 4: “fire of life” analysis of heart rate variability during acupuncture in clinical studies. Evidence-Based Complementary and Alternative Medicine. 2012;2012:8 pages.153480
    1. Guo ZL, Li M, Longhurst JC. Nucleus ambiguus cholinergic neurons activated by acupuncture: relation to enkephalin. Brain Research. 2012;1442:25–35.
    1. Ng EHY, So WS, Gao J, Wong YY, Ho PC. The role of acupuncture in the management of subfertility. Fertility and Sterility. 2008;90(1):1–13.
    1. Hori E, Takamoto K, Urakawa S, Ono T, Nishijo H. Effects of acupuncture on the brain hemodynamics. Autonomic Neuroscience. 2010;157(1-2):74–80.
    1. Kurono Y, Minagawa M, Ishigami T, Yamada A, Kakamu T, Hayano J. Acupuncture to Danzhong but not to Zhongting increases the cardiac vagal component of heart rate variability. Autonomic Neuroscience. 2011;161(1-2):116–120.
    1. Beissner F, Deichmann R, Henke C, Bär KJ. Acupuncture—deep pain with an autonomic dimension? NeuroImage. 2012;60(1):653–660.
    1. Noguchi E. Acupuncture regulates gut motility and secretion via nerve reflexes. Autonomic Neuroscience. 2010;156(1-2):15–18.
    1. Macefield VG, Henderson LA. Real-time imaging of the medullary circuitry involved in the generation of spontaneous muscle sympathetic nerve activity in awake subjects. Human Brain Mapping. 2010;31(4):539–549.
    1. Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. NeuroImage. 2008;42(1):169–177.
    1. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine. 2009;37(2):141–153.
    1. Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension. 2012;59(4):755–762.
    1. Burnstock G. Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Medical Hypotheses. 2009;73(4):470–472.
    1. Kim JI, Kim YS, Kang SK, et al. Electroacupuncture decreases nitric oxide synthesis in the hypothalamus of spontaneously hypertensive rats. Neuroscience Letters. 2008;446(2-3):78–82.
    1. Bonavera JJ, Dube MG, Kalra PS, Kalra SP. Anorectic effects of estrogen may be mediated by decreased neuropeptide-Y release in the hypothalamic paraventricular nucleus. Endocrinology. 1994;134(6):2367–2370.
    1. Frahm KA, Schow MJ, Tobet SA. The vasculature within the paraventricular nucleus of the hypothalamus in mice varies as a function of development, subnuclear location, and GABA signaling. Hormone and Metabolic Research. 2012;44(8):619–624.
    1. Nunn N, Womack M, Dart C, Barrett-Jolley R. Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Current Neuropharmacology. 2011;9(2):262–277.
    1. Kim EH, Kim Y, Jang MH, et al. Auricular acupuncture decreases neuropeptide Y expression in the hypothalamus of food-deprived Sprague-Dawley rats. Neuroscience Letters. 2001;307(2):113–116.
    1. Eshkevari L, Permaul E, Mulroney SE. Acupuncture blocks cold stress-induced increases in the hypothalamus-pituitary-adrenal axis in the rat. Journal of Endocrinology. 2013;217(1):95–104.
    1. Eshkevari L, Egan R, Phillips D, et al. Acupuncture at ST36 prevents chronic stress-induced increases in neuropeptide Y in rat. Experimental Biology and Medicine. 2012;237(1):18–23.
    1. Dampney RAL. Arcuate nucleus—a gateway for insulin’s action on sympathetic activity. Journal of Physiology. 2011;589(9):2109–2110.
    1. Li P, Tjen-A-Looi SC, Guo ZL, Fu LW, Longhurst JC. Long-loop pathways in cardiovascular electroacupuncture responses. Journal of Applied Physiology. 2009;106(2):620–630.
    1. de Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT, Campos RR. Upregulation of At1R and iNOS in the rostral ventrolateral medulla (RVLM) is essential for the sympathetic hyperactivity and hypertension in the 2K-1C wistar rat model. American Journal of Hypertension. 2010;23(7):708–715.
    1. Tjen-A-Looi SC, Li P, Longhurst JC. Medullary substrate and differential cardiovascular responses during stimulation of specific acupoints. The American Journal of Physiology. 2004;287(4):R852–R862.
    1. Guertzenstein PG, Silver A. Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. Journal of Physiology. 1974;242(2):489–503.
    1. Li P, Tjen-A-Looi SC, Longhurst JC. Nucleus raphé pallidus participates in midbrain-medullary cardiovascular sympathoinhibition during electroacupuncture. The American Journal of Physiology. 2010;299(5):R1369–R1376.
    1. Tjen-A-Looi SC, Li P, Longhurst JC. Midbrain vlPAG inhibits rVLM cardiovascular sympathoexcitatory responses during electroacupuncture. The American Journal of Physiology. 2006;290(6):H2543–H2553.
    1. Tjen-A-Looi SC, Li P, Longhurst JC. Role of medullary GABA, opioids, and nociceptin in prolonged inhibition of cardiovascular sympathoexcitatory reflexes during electroacupuncture in cats. The American Journal of Physiology. 2007;293(6):H3627–H3635.
    1. Moazzami A, Tjen-A-Looi SC, Guo ZL, Longhurst JC. Serotonergic projection from nucleus raphe pallidus to rostral ventrolateral medulla modulates cardiovascular reflex responses during acupuncture. Journal of Applied Physiology. 2010;108(5):1336–1346.
    1. Wang J, Irnaten M, Neff RA, et al. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Annals of the New York Academy of Sciences. 2001;940:237–246.
    1. Tjen-A-Looi SC, Li P, Longhurst JC. Processing cardiovascular information in the vlPAG during electroacupuncture in rats: roles of endocannabinoids and GABA. Journal of Applied Physiology. 2009;106(6):1793–1799.
    1. Guo ZL, Longhurst JC. Activation of reciprocal pathways between arcuate nucleus and ventrolateral periaqueductal gray during electroacupuncture: involvement of VGLUT3. Brain Research. 2010;1360:77–88.
    1. Li P, Tjen-A-Looi SC, Guo ZL, Longhurst JC. An arcuate-ventrolateral periaqueductal gray reciprocal circuit participates in electroacupuncture cardiovascular inhibition. Autonomic Neuroscience. 2010;158(1-2):13–23.
    1. Buijs RM, van Eden CG. The integration of stress by the hypothalamus, amygdala and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Progress in Brain Research. 2000;126:117–132.
    1. Tanida M, Katsuyama M, Sakatani K. Effects of fragrance administration on stress-induced prefrontal cortex activity and sebum secretion in the facial skin. Neuroscience Letters. 2008;432(2):157–161.
    1. Passatore M, Roatta S. Influence of sympathetic nervous system on sensorimotor function: whiplash associated disorders (WAD) as a model. European Journal of Applied Physiology. 2006;98(5):423–449.
    1. Sakatani K, Kitagawa T, Aoyama N, Sasaki M. Effects of acupuncture on autonomic nervous function and prefrontal cortex activity. Advances in Experimental Medicine and Biology. 2010;662:455–460.
    1. Li P, Longhurst JC. Neural mechanism of electroacupuncture’s hypotensive effects. Autonomic Neuroscience. 2010;157(1-2):24–30.
    1. Zhou W, Longhurst JC. Neuroendocrine mechanisms of acupuncture in the treatment of hypertension. Evidence-Based Complementary and Alternative Medicine. 2012;2012:9 pages.878673
    1. Chen J, Song GQ, Yin J, Koothan T, Chen JDZ. Electroacupuncture improves impaired gastric motility and slow waves induced by rectal distension in dogs. The American Journal of Physiology. 2008;295(3):G614–G620.
    1. Ouyang H, Xing J, Chen J. Electroacupuncture restores impaired gastric accommodation in vagotomized dogs. Digestive Diseases and Sciences. 2004;49(9):1418–1424.
    1. Yin J, Chen J, Chen JDZ. Ameliorating effects and mechanisms of electroacupuncture on gastric dysrhythmia, delayed emptying, and impaired accommodation in diabetic rats. The American Journal of Physiology. 2010;298(4):G563–G570.
    1. Uchida S, Kagitani F, Hotta H. Mechanism of the reflex inhibition of heart rate elicited by acupuncture-like stimulation in anesthetized rats. Autonomic Neuroscience. 2008;143(1-2):12–19.
    1. Uchida S, Kagitani F, Hotta H. Neural mechanisms of reflex inhibition of heart rate elicited by acupuncture-like stimulation in anesthetized rats. Autonomic Neuroscience. 2010;157(1-2):18–23.
    1. Guo ZL, Longhurst JC. Expression of c-Fos in arcuate nucleus induced by electroacupuncture: relations to neurons containing opioids and glutamate. Brain Research. 2007;1166(1):65–76.
    1. Guo ZL, Moazzami AR, Tjen-A-Looi S, Longhurst JC. Responses of opioid and serotonin containing medullary raphe neurons to electroacupuncture. Brain Research. 2008;1229:125–136.
    1. Li M, Tjen-A-Looi SC, Longhurst JC. Electroacupuncture enhances preproenkephalin mRNA expression in rostral ventrolateral medulla of rats. Neuroscience Letters. 2010;477(2):61–65.
    1. Boyadjieva N, Advis JP, Sarkar DK. Role of β-endorphin, corticotropin-releasing hormone, and autonomic nervous system in mediation of the effect of chronic ethanol on natural killer cell cytolytic activity. Alcoholism: Clinical and Experimental Research. 2006;30(10):1761–1767.
    1. Harbach H, Moll B, Boedeker RH, et al. Minimal immunoreactive plasma β-endorphin and decrease of cortisol at standard analgesia or different acupuncture techniques. European Journal of Anaesthesiology. 2007;24(4):370–376.
    1. Chae Y, Kim SY, Park HS, Lee H, Park HJ. Experimentally manipulating perceptions regarding acupuncture elicits different responses to the identical acupuncture stimulation. Physiology and Behavior. 2008;95(3):515–520.
    1. Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. Journal of Neuroscience. 1999;19(1):484–494.
    1. Tsurugizawa T, Kondoh T, Torii K. Forebrain activation induced by postoral nutritive substances in rats. NeuroReport. 2008;19(11):1111–1115.
    1. Tomé D, Schwarz J, Darcel N, Fromentin G. Protein, amino acids, vagus nerve signaling, and the brain. The American Journal of Clinical Nutrition. 2009;90(3):838S–843S.
    1. Noh J, Seal RP, Garver JA, Edwards RH, Kandler K. Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nature Neuroscience. 2010;13(2):232–238.
    1. Seal RP, Wang X, Guan Y, et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature. 2009;462(7273):651–655.
    1. Ishide T, Amer A, Maher TJ, Ally A. Nitric oxide within periaqueductal gray modulates glutamatergic neurotransmission and cardiovascular responses during mechanical and thermal stimuli. Neuroscience Research. 2005;51(1):93–103.
    1. Fu LW, Longhurst JC. Electroacupuncture modulates vlPAG release of GABA through presynaptic cannabinoid CB1 receptors. Journal of Applied Physiology. 2009;106(6):1800–1809.
    1. Manni L, Albanesi M, Guaragna M, Paparo SB, Aloe L. Neurotrophins and acupuncture. Autonomic Neuroscience. 2010;157(1-2):9–17.
    1. Mannerås L, Jonsdottir IH, Holmäng A, Lönn M, Stener-Victorin E. Low-frequency electro-acupuncture and physical exercise improve metabolic disturbances and modulate gene expression in adipose tissue in rats with dihydrotestosterone-induced polycystic ovary syndrome. Endocrinology. 2008;149(7):3559–3568.
    1. Mannerås L, Cajander S, Lönn M, Stener-Victorin E. Acupuncture and exercise restore adipose tissue expression of sympathetic markers and improve ovarian morphology in rats with dihydrotestosterone-induced PCOS. The American Journal of Physiology. 2009;296(4):R1124–R1131.
    1. Mani L, Roco ML, Paparo SB, Guaragna M. Electroacupucture and nerve growth factor: potential clinical applications. Archives Italiennes de Biologie. 2011;149(2):247–255.

Source: PubMed

3
Prenumerera