A phase I dose-escalation study of selumetinib in combination with docetaxel or dacarbazine in patients with advanced solid tumors

Patricia M LoRusso, Jeffrey R Infante, Kevin B Kim, Howard A Burris 3rd, Gregory Curt, Ugochi Emeribe, Delyth Clemett, Helen K Tomkinson, Roger B Cohen, Patricia M LoRusso, Jeffrey R Infante, Kevin B Kim, Howard A Burris 3rd, Gregory Curt, Ugochi Emeribe, Delyth Clemett, Helen K Tomkinson, Roger B Cohen

Abstract

Background: The RAS/RAF/MEK/ERK pathway is constitutively activated in many cancers. Selumetinib (AZD6244, ARRY-142886) is an oral, potent and highly selective, allosteric MEK1/2 inhibitor with a short half-life that has shown clinical activity as monotherapy in phase I and II studies of advanced cancer. Preclinical data suggest that selumetinib may enhance the activity of chemotherapeutic agents. We assessed the safety, tolerability, and pharmacokinetics (PK) of selumetinib (AZD6244, ARRY-142886) in combination with docetaxel or dacarbazine in patients with advanced solid tumors.

Methods: This study was a phase I, open-label, multicenter study in patients aged ≥18 years with advanced solid tumors who were candidates for docetaxel or dacarbazine treatment. Part A of the study (dose escalation) evaluated safety, tolerability, PK, and maximum tolerated dose (MTD) of selumetinib twice daily (BID) with docetaxel 75 mg/m2 or dacarbazine 1000 mg/m2 administered every 21 days. Patients receiving docetaxel could be administered primary prophylactic granulocyte-colony stimulating factor according to standard guidelines. Part B of the study (dose expansion) further evaluated safety, tolerability, and PK in 12 additional patients at the MTD combinations determined in part A.

Results: A total of 35 patients received selumetinib plus docetaxel, and 25 received selumetinib plus dacarbazine. The MTD of selumetinib was 75 mg BID in combination with either docetaxel (two dose-limiting toxicity [DLT] events: neutropenia with fever, and thrombocytopenia) or dacarbazine (one DLT event: thrombocytopenia). Common adverse events occurring with each treatment combination were diarrhea, peripheral/periorbital edema, fatigue, and nausea. PK parameters for selumetinib and docetaxel or dacarbazine were similar when administered alone or in combination. Partial responses were reported in 6/35 patients receiving selumetinib plus docetaxel and 4/25 patients receiving selumetinib plus dacarbazine.

Conclusions: The combinations of selumetinib plus docetaxel and selumetinib plus dacarbazine demonstrated manageable safety and tolerability profiles and preliminary signs of clinical activity in patients with advanced solid tumors.

Trial registration: ClinicalTrials.gov NCT00600496; registered 8 July 2009.

Keywords: Advanced solid tumors; Dacarbazine; Docetaxel; Dose-escalation; Selumetinib.

Figures

Fig. 1
Fig. 1
Patient disposition at the time of data cut-off for primary safety analysis (August 2010) in the (a) selumetinib plus docetaxel and (b) selumetinib plus dacarbazine treatment arms. BID, twice daily; ppG-CSF, primary prophylactic granulocyte-colony stimulating factor
Fig. 2
Fig. 2
Waterfall plots for greatest change in target lesion size from baseline for the (a) selumetinib plus docetaxel and (b) selumetinib plus dacarbazine arms. Lower reference line indicates the point below which best response is partial response (>30% reduction). Upper reference line indicates the point above which best response is progressive disease (>20%). Administration of primary prophylactic granulocyte colony stimulating factor (ppG-CSF) differed between the part A selumetinib 75 mg bid cohort due to differences in treatment practices between study centers: aReceived primary ppG-CSF in cycle 1; bDid not receive ppG-CSF in cycle 1. Response Evaluation Criteria In Solid Tumors best response: N, not evaluable; P, progressive disease; R, partial response; S, stable disease. Population: Measurable disease at baseline and underwent follow-up scan

References

    1. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther. 2007;6(8):2209–19. doi: 10.1158/1535-7163.MCT-07-0231.
    1. Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter? J Clin Oncol. 2013;31(8):1112–21. doi: 10.1200/JCO.2012.43.0454.
    1. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13(5):1576–83. doi: 10.1158/1078-0432.CCR-06-1150.
    1. Banerji U, Camidge DR, Verheul HM, Agarwal R, Sarker D, Kaye SB, et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res. 2010;16(5):1613–23. doi: 10.1158/1078-0432.CCR-09-2483.
    1. Denton CL, Gustafson DL. Pharmacokinetics and pharmacodynamics of AZD6244 (ARRY-142886) in tumour-bearing nude mice. Cancer Chemother Pharmacol. 2011;67(2):349–60. doi: 10.1007/s00280-010-1323-z.
    1. Leijen S, Soetekouw PM, Jeffry Evans TR, Nicolson M, Schellens JH, Learoyd M, et al. A phase I, open-label, randomized crossover study to assess the effect of dosing of the MEK 1/2 inhibitor selumetinib (AZD6244; ARRY-142866) in the presence and absence of food in patients with advanced solid tumours. Cancer Chemother Pharmacol. 2011;68(6):1619–28. doi: 10.1007/s00280-011-1732-7.
    1. Bennouna J, Lang I, Valladares-Ayerbes M, Boer K, Adenis A, Escudero P, et al. A phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine Monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest New Drugs. 2011;29(5):1021–8. doi: 10.1007/s10637-010-9392-8.
    1. Bodoky G, Timcheva C, Spigel DR, La Stella PJ, Ciuleanu TE, Pover G, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest New Drugs. 2012;30(3):1216–23. doi: 10.1007/s10637-011-9687-4.
    1. Hainsworth JD, Cebotaru CL, Kanarev V, Ciuleanu TE, Damyanov D, Stella P, et al. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244 (ARRY-142886) versus Pemetrexed in patients with non-small cell lung cancer who have failed one or two prior chemotherapeutic regimens. J Thorac Oncol. 2010;5(10):1630–6. doi: 10.1097/JTO.0b013e3181e8b3a3.
    1. Kirkwood JM, Bastholt L, Robert C, Sosman J, Larkin J, Hersey P, et al. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as Monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res. 2012;18(2):555–67. doi: 10.1158/1078-0432.CCR-11-1491.
    1. Holt SV, Logie A, Odedra R, Heier A, Heaton SP, Alferez D, et al. The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models. Br J Cancer. 2012;106(5):858–66. doi: 10.1038/bjc.2012.8.
    1. Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013;14(1):38–47. doi: 10.1016/S1470-2045(12)70489-8.
    1. Robert C, Dummer R, Gutzmer R, Lorigan P, Kim KB, Nyakas M, et al. Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol. 2013;14(8):733–40. doi: 10.1016/S1470-2045(13)70237-7.
    1. Patel SP, Lazar AJ, Papadopoulos NE, Liu P, Infante JR, Glass MR, et al. Clinical responses to selumetinib (AZD6244; ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma. Cancer. 2013;119(4):799–805. doi: 10.1002/cncr.27790.
    1. Clarke SJ, Rivory LP. Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet. 1999;36(2):99–114. doi: 10.2165/00003088-199936020-00002.
    1. Reid JM, Kuffel MJ, Miller JK, Rios R, Ames MM. Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2, and CYP2E1. Clin Cancer Res. 1999;5(8):2192–7.
    1. Carvajal RD, Sosman JA, Quevedo JF, Milhem MM, Joshua AM, Kudchadkar RR, et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014;311(23):2397–405. doi: 10.1001/jama.2014.6096.
    1. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De MF, Von PJ, et al. Randomized phase III trial of Pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004;22(9):1589–97. doi: 10.1200/JCO.2004.08.163.
    1. Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O’Rourke M, et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol. 2000;18(10):2095–103. doi: 10.1200/JCO.2000.18.10.2095.
    1. Gupta A, Love S, Schuh A, Shanyinde M, Larkin JM, Plummer R, et al. DOC-MEK: a double-blind randomized phase II trial of docetaxel with or without selumetinib in wild-type BRAF advanced melanoma. Ann Oncol. 2014;25(5):968–74. doi: 10.1093/annonc/mdu054.

Source: PubMed

3
Prenumerera