Early Pregnancy Serum Metabolite Profiles Associated with Hypertensive Disorders of Pregnancy in African American Women: A Pilot Study

Erin P Ferranti, Jennifer K Frediani, Rebecca Mitchell, Jolyn Fernandes, Shuzhao Li, Dean P Jones, Elizabeth Corwin, Anne L Dunlop, Erin P Ferranti, Jennifer K Frediani, Rebecca Mitchell, Jolyn Fernandes, Shuzhao Li, Dean P Jones, Elizabeth Corwin, Anne L Dunlop

Abstract

Hypertensive disorders of pregnancy (HDP) are the most common cardiometabolic complications of pregnancy, affecting nearly 10% of US pregnancies and contributing substantially to maternal and infant morbidity and mortality. In the US, women of African American race are at increased risk for HDP. Early biomarkers that reliably identify women at risk for HDP remain elusive, yet are essential for the early identification and targeting of interventions to improve maternal and infant outcomes. We employed high-resolution metabolomics (HRM) to identify metabolites and metabolic pathways that were altered in early (8-14 weeks) gestation serum samples of pregnant African American women who developed HDP after 20 weeks' gestation (n = 20)-either preeclampsia (PE; n = 11) or gestational hypertension (gHTN; n = 9)-compared to those who delivered full term without complications (n = 80). We found four metabolic pathways that were significantly (p < 0.05) altered in women who developed PE and five pathways that were significantly (p < 0.05) altered in women who developed gHTN compared to women who delivered full term without complications. We also found that four specific metabolites (p < 0.05) were distinctly upregulated (retinoate, kynurenine) or downregulated (SN-glycero-3-phosphocholine, 2'4'-dihydroxyacetophenone) in women who developed PE compared to gHTN. These findings support that there are systemic metabolic disruptions that are detectable in early pregnancy (8-14 weeks of gestation) among pregnant African American women who develop PE and gHTN. Furthermore, the early pregnancy metabolic disruptions associated with PE and gHTN are distinct, implying they are unique entities rather than conditions along a spectrum of the same disease process despite the common clinical feature of high blood pressure.

Conflict of interest statement

There are no conflicts of interest to declare by any author.

Copyright © 2020 Erin P. Ferranti et al.

Figures

Figure 1
Figure 1
Metabolic profiles of women with PE versus healthy controls. (a) Type 1 Manhattan plot, -log10p vs. mass-to-charge ratio. 470 m/z features were found significant at p value 0.05. No metabolites were significant by false discovery rate (FDR) q value 0.20. Red dots represent those features upregulated in preeclampsia (PE), and the blue dots represent features that were downregulated in PE; the dashed line represents significance cut-off of p value < 0.05. (b) Type 2 Manhattan plot, -log10p vs. retention time, the majority of features had retention time below 2 minutes; the dashed line represents significance cut-off of p value < 0.05. (c) 2-way hierarchical cluster analysis, PE is represented in green and healthy full term in red across the x-axis; significant features are clustered on the y-axis. (d) Principal component analysis. (e) Mummichog-enriched pathways at p value < 0.05 represented by the green dotted line.
Figure 2
Figure 2
Metabolic profiles of women with gestational hypertension versus healthy controls. (a) Type 1 Manhattan plot, -log10p vs. mass-to-charge ratio. 388 m/z features were found significant at p value 0.05. No metabolites were significant by false discovery rate (FDR) q value 0.20. Red dots represent those features downregulated in gestational hypertension (gHTN), and the blue dots represent features that were downregulated in healthy full-term women; the dashed line represents significance cut-off of p value < 0.05. (b) Type 2 Manhattan plot, -log10p vs. retention time. Majority of features had retention time below 2 minutes; the dashed line represents significance cut-off of p value < 0.05. (c) 2-way hierarchical cluster analysis. gHTN is represented in red and healthy full term in green across the x-axis; significant features are clustered on the y-axis; there is a clean separation seen between biological samples. (d) Principal component analysis. (e) Mummichog-enriched pathways at p value < 0.05 represented by the green dotted line.
Figure 3
Figure 3
Preeclampsia vs. gestational hypertension. (a) Type 1 Manhattan plot, -log10p vs. mass-to-charge ratio. 486 m/z features were found significant at p value 0.05. No metabolites were significant by false discovery rate (FDR) q value 0.20. Red dots represent those features downregulated in gestational hypertension (gHTN), and the blue dots represent features that were downregulated in PE. (b) Type 2 Manhattan plot, -log10p vs. retention time. (c) 2-way hierarchical cluster analysis. gHTN is represented in red and preeclampsia in green across the x-axis; significant features are clustered on the y-axis; there is clear separation between the two groups of women. (d) Principal component analysis.
Figure 4
Figure 4
Gestational hypertension vs. preeclampsia. (a) Partial least squares-discriminant analysis (PLS-DA). This supervised discriminatory analysis shows preeclampsia (PE) in orange triangles and gestational hypertension (gHTN) in blue circles. (b) Venn diagram showing 169 overlapping significant features between linear regression (p value < 0.05) and PLS-DA (VIP > 2). (c) Box and whisker plots for 4 significant verified features (from left to right) SN-glycero-3-phosphocholine (m/z 258.1094; RT 76 s), retinoate (m/z 301.2174; RT 28 s), L-kynurenine (m/z 209.0922; RT 40 s), and 2′4′-dihydroxyacetophenone (m/z 153.0577; RT 42 s).

References

    1. Report of the National High Blood Pressure Education Program Working Group on high blood pressure in pregnancy. American Journal of Obstetrics and Gynecology. 2000;183(1):1–22. doi: 10.1067/mob.2000.107928.
    1. Sibai B. M. Diagnosis and management of gestational hypertension and preeclampsia. Obstetrics and Gynecology. 2003;102(1):181–192. doi: 10.1016/s0029-7844(03)00475-7.
    1. Kuklina E. V., Ayala C., Callaghan W. M. Hypertensive disorders and severe obstetric morbidity in the United States. Obstetrics and Gynecology. 2009;113(6):1299–1306. doi: 10.1097/AOG.0b013e3181a45b25.
    1. Creanga A. A., Syverson C., Seed K., Callaghan W. M. Pregnancy-related mortality in the United States, 2011-2013. Obstetrics and Gynecology. 2017;130(2):366–373. doi: 10.1097/AOG.0000000000002114.
    1. Shen M., Smith G. N., Rodger M., White R. R., Walker M. C., Wen S. W. Comparison of risk factors and outcomes of gestational hypertension and pre-eclampsia. PLoS One. 2017;12(4) doi: 10.1371/journal.pone.0175914.
    1. Poon L. C., Kametas N. A., Chelemen T., Leal A., Nicolaides K. H. Maternal risk factors for hypertensive disorders in pregnancy: a multivariate approach. Journal of Human Hypertension. 2010;24(2):104–110. doi: 10.1038/jhh.2009.45.
    1. Li S., Dunlop A. L., Jones D. P., Corwin E. J. High-resolution metabolomics: review of the field and implications for nursing science and the study of preterm birth. Biological Research for Nursing. 2016;18(1):12–22. doi: 10.1177/1099800415595463.
    1. Uppal K., Walker D. I., Liu K., Li S., Go Y. M., Jones D. P. Computational metabolomics: a framework for the million metabolome. Chemical Research in Toxicology. 2016;29(12):1956–1975. doi: 10.1021/acs.chemrestox.6b00179.
    1. Walker D. I., Go K., Liu K., Pennell K., Jones D. P. Population screening for biological and environmental properties of the human metabolic phenotype: implications for personalized medicine. In: Holmes E., Nicholson J. K., Darzi A. W., Lindon J. C., editors. Metabolic Phenotyping in Personalized and Public Healthcare. Amsterdam: Elsevier; 2016. pp. 167–211.
    1. Bahado-Singh R. O., Akolekar R., Mandal R., et al. Metabolomics and first-trimester prediction of early-onset preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine. 2012;25(10):1840–1847. doi: 10.3109/14767058.2012.680254.
    1. Bahado-Singh R. O., Akolekar R., Mandal R., et al. First-trimester metabolomic detection of late-onset preeclampsia. American Journal of Obstetrics and Gynecology. 2013;208(1):58.e1–58.e7. doi: 10.1016/j.ajog.2012.11.003.
    1. Bahado-Singh R. O., Syngelaki A., Mandal R., et al. Metabolomic determination of pathogenesis of late-onset preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine. 2017;30(6):658–664. doi: 10.1080/14767058.2016.1185411.
    1. Kelly R. S., Croteau-Chonka D. C., Dahlin A., et al. Integration of metabolomic and transcriptomic networks in pregnant women reveals biological pathways and predictive signatures associated with preeclampsia. Metabolomics. 2017;13(1) doi: 10.1007/s11306-016-1149-8.
    1. Kuc S., Koster M. P., Pennings J. L., et al. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia. PLoS One. 2014;9(5) doi: 10.1371/journal.pone.0098540.
    1. Austdal M., Tangerås L., Skråstad R., et al. First trimester urine and serum metabolomics for prediction of preeclampsia and gestational hypertension: a prospective screening study. International Journal of Molecular Sciences. 2015;16(9):21520–21538. doi: 10.3390/ijms160921520.
    1. Corwin E. J., Hogue C. J., Pearce B., et al. Protocol for the Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy Cohort Study. BMC Pregnancy and Childbirth. 2017;17(1):p. 161. doi: 10.1186/s12884-017-1357-x.
    1. MfetddCONACoOaGOGe-Aa.
    1. American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ task force on hypertension in pregnancy. Obstetrics and Gynecology. 2013;122(5) doi: 10.1097/01.AOG.0000437382.03963.88.
    1. Tranquilli A. L., Brown M. A., Zeeman G. G., Dekker G., Sibai B. M. The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP) Pregnancy hypertension. 2013;3(1):44–47. doi: 10.1016/j.preghy.2012.11.001.
    1. Association AD. Gestational diabetes mellitus. Diabetes Care. 2004;27(1):S88–S90.
    1. Go Y. M., Walker D. I., Liang Y., et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicological Sciences. 2015;148(2):531–543. doi: 10.1093/toxsci/kfv198.
    1. Johnson J. M., Yu T., Strobel F. H., Jones D. P. A practical approach to detect unique metabolic patterns for personalized medicine. The Analyst. 2010;135(11):2864–2870. doi: 10.1039/c0an00333f.
    1. Yu T., Park Y., Li S., Jones D. P. Hybrid feature detection and information accumulation using high-resolution LC-MS metabolomics data. Journal of Proteome Research. 2013;12(3):1419–1427. doi: 10.1021/pr301053d.
    1. Uppal K., Soltow Q. A., Strobel F. H., et al. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinformatics. 2013;14(1):p. 15. doi: 10.1186/1471-2105-14-15.
    1. Johnson W. E., Li C., Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–127. doi: 10.1093/biostatistics/kxj037.
    1. Schymanski E. L., Jeon J., Gulde R., et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science & Technology. 2014;48(4):2097–2098. doi: 10.1021/es5002105.
    1. Uppal K., Walker D. I., Jones D. P. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Analytical Chemistry. 2017;89(2):1063–1067. doi: 10.1021/acs.analchem.6b01214.
    1. Wishart D. S., Jewison T., Guo A. C., et al. HMDB 3.0--the human metabolome database in 2013. Nucleic Acids Research. 2013;41(Database issue):D801–D807. doi: 10.1093/nar/gks1065.
    1. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research. 2017;45(D1):D353–D361. doi: 10.1093/nar/gkw1092.
    1. Smith C. A., O'Maille G., Want E. J., et al. METLIN: a metabolite mass spectral database. Therapeutic Drug Monitoring. 2005;27(6):747–751. doi: 10.1097/01.ftd.0000179845.53213.39.
    1. Xia J., Wishart D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature protocols. 2011;6(6):743–760. doi: 10.1038/nprot.2011.319.
    1. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–193. doi: 10.1093/bioinformatics/19.2.185.
    1. Kohl S. M., Klein M. S., Hochrein J., Oefner P. J., Spang R., Gronwald W. State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics. 2012;8(Suppl 1):146–160. doi: 10.1007/s11306-011-0350-z.
    1. Hochberg Y., Benjamini Y. More powerful procedures for multiple significance testing. Statistics in Medicine. 1990;9(7):811–818. doi: 10.1002/sim.4780090710.
    1. Go Y. M., Walker D. I., Soltow Q. A., et al. Metabolome-wide association study of phenylalanine in plasma of common marmosets. Amino Acids. 2015;47(3):589–601. doi: 10.1007/s00726-014-1893-x.
    1. Li S., Park Y., Duraisingham S., et al. Predicting network activity from high throughput metabolomics. PLoS Computational Biology. 2013;9(7, article e1003123) doi: 10.1371/journal.pcbi.1003123.
    1. Lo J. O., Mission J. F., Caughey A. B. Hypertensive disease of pregnancy and maternal mortality. Current Opinion in Obstetrics & Gynecology. 2013;25(2):124–132. doi: 10.1097/GCO.0b013e32835e0ef5.
    1. Ramanujam V. M., Anderson K. E. Porphyria diagnostics-part 1: a brief overview of the porphyrias. Current Protocols in Human Genetics. 2015;86(1) doi: 10.1002/0471142905.hg1720s86.
    1. Farfaras A., Zagouri F., Zografos G., Kostopoulou A., Sergentanis T. N., Antoniou S. Acute intermittent porphyria in pregnancy: a common misdiagnosis. Clinical and Experimental Obstetrics & Gynecology. 2010;37(4):256–260.
    1. Aziz Ibrahim A., Esen U. I. Porphyria cutanea tarda in pregnancy: a case report. Journal of Obstetrics and Gynaecology. 2004;24(5):574–575. doi: 10.1080/01443610410001722716.
    1. Tollanes M. C., Aarsand A. K., Sandberg S. Excess risk of adverse pregnancy outcomes in women with porphyria: a population-based cohort study. Journal of Inherited Metabolic Disease. 2011;34(1):217–223. doi: 10.1007/s10545-010-9231-2.
    1. Troisi R., Potischman N., Roberts J. M., et al. Maternal serum oestrogen and androgen concentrations in preeclamptic and uncomplicated pregnancies. International Journal of Epidemiology. 2003;32(3):455–460. doi: 10.1093/ije/dyg094.
    1. Sharifzadeh F., Kashanian M., Fatemi F. A comparison of serum androgens in pre-eclamptic and normotensive pregnant women during the third trimester of pregnancy. Gynecological Endocrinology. 2012;28(10):834–836. doi: 10.3109/09513590.2012.683061.
    1. Faupel-Badger J. M., Wang Y., Anne Cathrine Staff, et al. Maternal and cord steroid sex hormones, angiogenic factors, and insulin-like growth factor axis in African-American preeclamptic and uncomplicated pregnancies. Cancer Causes & Control. 2012;23(5):779–784. doi: 10.1007/s10552-012-9934-9.
    1. Shao X., Liu Y., Liu M., et al. Testosterone represses estrogen signaling by upregulating miR-22: a mechanism for imbalanced steroid hormone production in preeclampsia. Hypertension. 2017;69(4):721–730. doi: 10.1161/HYPERTENSIONAHA.116.08468.
    1. Park M. N., Park K. H., Lee J. E., et al. The expression and activation of sex steroid receptors in the preeclamptic placenta. International Journal of Molecular Medicine. 2018;41(5):2943–2951. doi: 10.3892/ijmm.2018.3474.
    1. Mastorakos G., Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Annals of the New York Academy of Sciences. 2003;997(1):136–149. doi: 10.1196/annals.1290.016.
    1. Kosicka K., Siemiatkowska A., Szpera-Gozdziewicz A., Krzyscin M., Breborowicz G. H., Glowka F. K. Increased cortisol metabolism in women with pregnancy-related hypertension. Endocrine. 2018;61(1):125–133. doi: 10.1007/s12020-018-1586-4.
    1. Kosicka K., Siemiątkowska A., Krzyścin M., et al. Glucocorticoid metabolism in hypertensive disorders of pregnancy: analysis of plasma and urinary cortisol and cortisone. PLoS One. 2015;10(12):p. e0144343. doi: 10.1371/journal.pone.0144343.
    1. Tarrade A., Rochette-Egly C., Guibourdenche J., Evain-Brion D. The expression of nuclear retinoid receptors in human implantation. Placenta. 2000;21(7):703–710. doi: 10.1053/plac.2000.0568.
    1. Seol H. J., Kim J. W., Kim H. J. Retinol-binding protein-4 is decreased in patients with preeclampsia in comparison with normal pregnant women. Journal of Perinatal Medicine. 2011;39(3):287–289. doi: 10.1515/JPM.2011.016.
    1. Mendola P., Ghassabian A., Mills J. L., et al. Retinol-binding protein 4 and lipids prospectively measured during early to mid-pregnancy in relation to preeclampsia and preterm birth risk. American Journal of Hypertension. 2017;30(6):569–576. doi: 10.1093/ajh/hpx020.
    1. Lu Q., Liu C., Liu Y., Zhang N., Deng H., Zhang Z. Serum markers of pre-eclampsia identified on proteomics. The Journal of Obstetrics and Gynaecology Research. 2016;42(9):1111–1118. doi: 10.1111/jog.13037.
    1. Zhang Y., Wang T., Gui S., et al. Association between plasma retinol binding protein 4 levels and severe preeclampsia. Journal of Obstetrics and Gynaecology. 2018;38(3):438–441. doi: 10.1080/01443615.2017.1360260.
    1. Shouk T. A., Omar M. N., Fayed S. T. Essential fatty acids profile and lipid peroxides in severe pre-eclampsia. Annals of Clinical Biochemistry. 1999;36(1):62–65. doi: 10.1177/000456329903600108.
    1. Gupta S., Aziz N., Sekhon L., et al. Lipid peroxidation and antioxidant status in Preeclampsia. Obstetrical & Gynecological Survey. 2009;64(11):750–759. doi: 10.1097/OGX.0b013e3181bea0ac.
    1. Llurba E., Gratacos E., Martin-Gallan P., Cabero L., Dominguez C. A comprehensive study of oxidative stress and antioxidant status in preeclampsia and normal pregnancy. Free Radical Biology & Medicine. 2004;37(4):557–570. doi: 10.1016/j.freeradbiomed.2004.04.035.
    1. Plenty N. L., Faulkner J. L., Cotton J., et al. Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins & Other Lipid Mediators. 2018;136:15–22. doi: 10.1016/j.prostaglandins.2018.03.001.
    1. Mirtschink P., Jang C., Arany Z., Krek W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. European Heart Journal. 2018;39(26):2497–2505. doi: 10.1093/eurheartj/ehx518.
    1. Saad A. F., Dickerson J., Kechichian T. B., et al. High-fructose diet in pregnancy leads to fetal programming of hypertension, insulin resistance, and obesity in adult offspring. American Journal of Obstetrics and Gynecology. 2016;215(3):378.e1–378.e6. doi: 10.1016/j.ajog.2016.03.038.
    1. Ameta K., Gupta A., Kumar S., Sethi R., Kumar D., Mahdi A. A. Essential hypertension: a filtered serum based metabolomics study. Scientific Reports. 2017;7(1):p. 2153. doi: 10.1038/s41598-017-02289-9.
    1. Ntzouvani A., Nomikos T., Panagiotakos D., et al. Amino acid profile and metabolic syndrome in a male Mediterranean population: a cross-sectional study. Nutrition, Metabolism, and Cardiovascular Diseases. 2017;27(11):1021–1030. doi: 10.1016/j.numecd.2017.07.006.
    1. Rajapakse N. W., Head G. A., Kaye D. M. Say NO to obesity-related hypertension: role of the L-arginine-nitric oxide pathway. Hypertension. 2016;67(5):813–819. doi: 10.1161/HYPERTENSIONAHA.116.06778.
    1. Roe A. J., Zhang S., Bhadelia R. A., et al. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. The American Journal of Clinical Nutrition. 2017;105(6):1283–1290. doi: 10.3945/ajcn.116.137158.
    1. Wang Y., Liu H., McKenzie G., et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine. 2010;16(3):279–285. doi: 10.1038/nm.2092.
    1. Changsirivathanathamrong D., Wang Y., Rajbhandari D., et al. Tryptophan metabolism to kynurenine is a potential novel contributor to hypotension in human sepsis. Critical Care Medicine. 2011;39(12):2678–2683. doi: 10.1097/CCM.0b013e31822827f2.
    1. Benton S. J., Ly C., Vukovic S., Bainbridge S. A. Andree Gruslin award lecture: metabolomics as an important modality to better understand preeclampsia. Placenta. 2017;60(Supplement 1):S32–s40. doi: 10.1016/j.placenta.2016.11.006.

Source: PubMed

3
Prenumerera