Cefazolin and Ertapenem, a Synergistic Combination Used To Clear Persistent Staphylococcus aureus Bacteremia

George Sakoulas, Joshua Olson, Juwon Yim, Niedita B Singh, Monika Kumaraswamy, Diana T Quach, Michael J Rybak, Joseph Pogliano, Victor Nizet, George Sakoulas, Joshua Olson, Juwon Yim, Niedita B Singh, Monika Kumaraswamy, Diana T Quach, Michael J Rybak, Joseph Pogliano, Victor Nizet

Abstract

Ertapenem and cefazolin were used in combination to successfully clear refractory methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia. In addition, recent work has demonstrated activity of combination therapy with beta-lactams from different classes against methicillin-resistant S. aureus (MRSA). The ertapenem-plus-cefazolin combination was evaluated for synergy in vitro and in vivo in a murine skin infection model using an index MSSA bloodstream isolate from a patient in whom persistent bacteremia was cleared with this combination and against a cadre of well-described research strains and clinical strains of MSSA and MRSA. Against the index MSSA bloodstream isolate, ertapenem and cefazolin showed synergy using both checkerboard (fractional inhibitory concentration [FIC] index = 0.375) and time-kill assays. Using a disk diffusion ertapenem potentiation assay, the MSSA isolate showed a cefazolin disk zone increased from 34 to 40 mm. In vitro pharmacokinetic/pharmacodynamic modeling at clinically relevant drug concentrations demonstrated bactericidal activity (>3 log10-CFU/ml reduction) of the combination but bacteriostatic activity of ether drug alone at 48 h. A disk diffusion potentiation assay showed that ertapenem increased the cefazolin zone of inhibition by >3 mm for 34/35 (97%) MSSA and 10/15 (67%) MRSA strains. A murine skin infection model of MSSA showed enhanced activity of cefazolin plus ertapenem compared to monotherapy with these agents. After successful use in clearance of MSSA bacteremia, the combination of ertapenem and cefazolin showed synergy against MSSA in vitro and in vivo This combination may warrant consideration for future clinical study in MSSA bacteremia.

Copyright © 2016 Sakoulas et al.

Figures

FIG 1
FIG 1
(A) Kill curves of the index MSSA isolate, rus276, employing 1/2 MIC of CZ or ETP alone or in combination. (B) Kill curve assays of MRSA MW2 containing ≤1/4 MIC of cefazolin, ertapenem, or both drugs. (C) Results of checkerboard analysis of susceptibilities to cefazolin MICs in media containing various concentrations of ertapenem for MRSA strains MW2, TCH 1516, and Sanger 252. The error bars indicate standard deviations.
FIG 2
FIG 2
(Left) Microscopy comparing the effects of CZ or ETP alone and in combination on MSSA rus276 at sub-MICs. Sytox Green and DAPI stain uptake was used to measure cellular permeabilization. (Right) Quantification of DAPI and Sytox staining, reflective of increases in cellular permeability with combined ETP and CZ compared to either drug alone at concentrations relative to the MIC.
FIG 3
FIG 3
CZ population analyses performed on MSSA rus276 under low (106 CFU/ml) and high (109 CFU/ml) inocula using Mueller-Hinton II (MH) or BHI agar containing 1/2 and 1/4 MIC ETP. ETP consistently reduced CZ heteroresistance, particularly under high-inoculum conditions.
FIG 4
FIG 4
(A) Kill curve assays of MSSA rus276 using human cathelicidin LL-37, CZ, or ETP alone or in combination. (B) Neutrophil killing assays of MSSA rus276 after growth in antibiotic-free medium (control) or media containing CZ, ETP, or both drugs. The results are expressed as percentages of bacterial survival remaining after 90 min compared to the starting bacterial density (*, P < 0.05 versus the control). The error bars indicate standard deviations.
FIG 5
FIG 5
(A) Simulated pharmacokinetic/pharmacodynamic modeling of MSSA rus276 employing CZ and ETP alone or in combination at clinically relevant concentrations. Only the combination regimen of ETP plus CZ achieved bactericidal activity at 24 and 48 h, and CZ plus ETP showed significantly lower CFU at 48 h than the other groups (P < 0.01; one-way ANOVA with Tukey's post hoc test). The error bars indicate standard deviations. (B) Bacterial counts in excised skin tissue of mice treated with CZ, ETP, or both drugs versus no antibiotics (control). The horizontal bars indicate the medians of the groups. Only the combination treatment group (CZ+ETP) showed bacterial counts less than those with the control (*, P < 0.02; Mann-Whitney U test). Control versus CZ (P = 0.17) and control versus ETP (P = 0.87) were not statistically significant.
FIG 6
FIG 6
Changes in cefazolin disk diffusion zone size with cefazolin replaced at 1 h by ertapenem versus cefazolin alone for clinical bloodstream isolates of MSSA (A) or MRSA (B).

References

    1. Naber CK. 2009. Staphylococcus aureus bacteremia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis 48(Suppl 4):S231–S237. doi:10.1086/598189.
    1. Fowler VG Jr, Olsen MK, Corey GR, Woods CW, Cabell CH, Reller LB, Cheng AC, Dudley T, Oddone EZ. 2003. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med 163:2066–2072. doi:10.1001/archinte.163.17.2066.
    1. Rose WE, Eickhoff JC, Shukla SK, Pantrangi M, Rooijakkers S, Cosgrove SE, Nizet V, Sakoulas G. 2012. Elevated serum interleukin-10 (IL-10) at time of hospital admission is predictive of mortality in patients with Staphylococcus aureus bacteremia. J Infect Dis 206:1604–1611. doi:10.1093/infdis/jis552.
    1. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fätkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE. 2006. S. aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665.
    1. Cosgrove S, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Mortality related to methicillin-resistant Staphylococcus aureus compared to to methicillin-susceptible S. aureus: a meta-analysis. Clin Infect Dis 36:53–59. doi:10.1086/345476.
    1. Iordanescu S, Surdeanu M. 1976. Two restriction and modification systems in Staphylococcus aureus NCTC 8325. J Gen Microbiol 96:277–281. doi:10.1099/00221287-96-2-277.
    1. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827. doi:10.1016/S0140-6736(02)08713-5.
    1. Gaviria-Agudelo C, Aroh C, Tareen N, Wakeland EK, Kim M, Copley LA. 2015. Genomic heterogeneity of methicillin-resistant Staphylococcus aureus associated with variation in severity of illness among children with acute hematogenous osteomyelitis. PLoS One 10:e130415. doi:10.1371/journal.pone.0130415.
    1. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791. doi:10.1073/pnas.0402521101.
    1. AB Biodisk. 2007. Etest application sheet. M0000503-MH0184 AB Biodisk, Solna, Sweden: .
    1. CLSI. 2012. Method for dilution antimicrobial susceptibility test for bacteria that grow aerobically; approved standard. CLSI document M07-A9, 9th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
    1. Braun Medical B, Inc. 2007. Cefazolin for injection USP and dextrose injection USP. .
    1. Douglas A, Udy AA, Wallis SC, Jarrett P, Stuart J, Lassig-Smith M, Roberts JA. 2011. Plasma and tissue pharmacokinetics of cefazolin in patients undergoing elective and semielective abdominal aortic aneurysm open repair surgery. Antimicrob Agents Chemother 55:5238–5242. doi:10.1128/AAC.05033-11.
    1. Brink AJ, Richards GA, Schillack V, Kiem S, Schentag J. 2009. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int J Antimicrob Agents 33:432–436. doi:10.1016/j.ijantimicag.2008.10.005.
    1. Smith JR, Barber KE, Hallesy J, Raut A, Rybak MJ. 2015. Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus isolates with reduced susceptibility to vancomycin, daptomycin, and linezolid in broth microdilution MIC and one-compartment pharmacokinetic/pharmacodynamic models. Antimicrob Agents Chemother 59:5529–5534. doi:10.1128/AAC.00773-15.
    1. Cottagnoud P, Pfister M, Cottagnoud M, Acosta F, Tauber MG. 2003. Activities of ertapenem, a new long-acting carbapenem, against penicillin-sensitive or -resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother 47:1943–1947. doi:10.1128/AAC.47.6.1943-1947.2003.
    1. Fields MT, Herndon BL, Bamberger DM. 1993. β-Lactamase-mediated inactivation and efficacy of cefazolin and cefmetazole in Staphylococcus aureus abscesses. Antimicrob Agents Chemother 37:203–206. doi:10.1128/AAC.37.2.203.
    1. Descourouez JL, Jorgenson MR, Wergin JE, Rose WE. 2013. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob Agents Chemother 57:1518–1520. doi:10.1128/AAC.02099-12.
    1. Werth BJ, Barber KE, Ireland CE, Rybak MJ. 2014. Evaluation of ceftaroline, vancomycin, daptomycin, or ceftaroline plus daptomycin against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother 58:3177–3181. doi:10.1128/AAC.00088-14.
    1. Lamsa W, Liu T, Dorrestein PC, Pogliano K. 2012. The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis. Mol Microbiol 84:486–500. doi:10.1111/j.1365-2958.2012.08038.x.
    1. Quach DT, Sakoulas G, Nizet V, Pogliano J, Pogliano K. 2016. Bacterial cytological profiling (BCP) as a rapid and accurate antimicrobial susceptibility testing method for Staphylococcus aureus. EBioMedicine 4:95–103. doi:10.1016/j.ebiom.2016.01.020.
    1. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE. 2011. Improved structure, function, and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27:1179–1180. doi:10.1093/bioinformatics/btr095.
    1. Sakoulas G, Bayer AS, Pogliano J, Tsuji BT, Yang SJ, Mishra NN, Nizet V, Yeaman MR, Moise PA. 2012. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 56:838–844. doi:10.1128/AAC.05551-11.
    1. Sakoulas G, Rose WE, Nonejuie P, Olson J, Pogliano J, Humphries R, Nizet V. 2014. Ceftaroline restores daptomycin activity of daptomycin-resistant vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 58:1494–1500. doi:10.1128/AAC.02274-13.
    1. Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V. 2005. d-Alanylation of teichoic acids promotes group A streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725. doi:10.1128/JB.187.19.6719-6725.2005.
    1. von Köckritz-Blickwede M, Chow OA, Nizet V. 2009. Fetal calf serum contains heat-stable nucleases that degrade neutrophil extracellular traps. Blood 114:5245–5246. doi:10.1182/blood-2009-08-240713.
    1. Morris TH. 1995. Antibiotic therapeutics in laboratory animals. Lab Anim 29:16–36. doi:10.1258/002367795780740393.
    1. Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S, Bose JL, Bayles KW, Horswill AR. 2012. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio 3:e00198–12. doi:10.1128/mBio.00198-12.
    1. Mirani ZA, Aziz M, Khan MN, Lal I, Hassan NU, Khan SI. 2013. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microb Pathog 61-62:66–72. doi:10.1016/j.micpath.2013.05.002.
    1. Corey GR. 2009. Staphylococcus aureus bloodstream infections: definitions and treatment. Clin Infect Dis 48:S254–S259. doi:10.1086/598186.
    1. Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, Thom KA, Cosgrove SE, Sakoulas G, Perencevich EN. 2011. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis 11:279. doi:10.1186/1471-2334-11-279.
    1. Sakoulas G, Okumura CY, Thienphrapa W, Olson J, Nonejuie P, Dam Q, Pogliano J, Yeaman MR, Hensler ME, Bayer AS, Nizet V. 2014. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med 92:139–149. doi:10.1007/s00109-013-1100-7.
    1. Cosgrove SE, Vigliani GA, Fowler VG Jr, Abrutyn E, Corey GR, Levine DP, Rupp ME, Chambers HF, Karchmer AW, Boucher HW. 2009. Initial low-dose gentamicin for Staphylococcus aureus bacteremia and endocarditis is nephrotoxic. Clin Infect Dis 48:713–721. doi:10.1086/597031.
    1. Fernández-Hidalgo N, Almirante B, Gavaldà J, Gurgui M, Peña C, de Alarcón A, Ruiz J, Vilacosta I, Montejo M, Vallejo N, López-Medrano F, Plata A, López J, Hidalgo-Tenorio C, Gálvez J, Sáez C, Lomas JM, Falcone M, de la Torre J, Martínez-Lacasa X, Pahissa A. 2013. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating enterococcus faecalis infective endocarditis. Clin Infect Dis 56:1261–1268. doi:10.1093/cid/cit052.
    1. Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy B, Suckow M, Wolter WR, Schroeder VA, Burnham CD, Mobashery S, Chang M, Dantas G. 2015. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat Chem Biol 11:855–861. doi:10.1038/nchembio.1911.
    1. Uete T, Matsuo K. 1995. Synergistic enhancement of in vitro antimicrobial activity of imipenem and cefazolin, cephalothin, cefotiam, cefamandole or cefoperazone in combination against methicillin-sensitive and -resistant Staphylococcus aureus. Jpn J Antibiot 48:402–408.
    1. Seidl K, Bayer AS, Fowler VG Jr, McKinnell JA, Abdel Hady W, Sakoulas G, Yeaman MR, Xiong YQ. 2011. Combinatorial phenotypic signatures distinguish persistent from resolving methicillin-resistant Staphylococcus aureus bacteremia isolates. Antimicrob Agents Chemother 55:575–582. doi:10.1128/AAC.01028-10.
    1. Abdelhady W, Bayer AS, Seidl K, Moormeier DE, Bayles KW, Cheung A, Yeaman MR, Xiong YQ. 2014. Impact of vancomycin on sarA-mediated biofilm formation: role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J Infect Dis 209:1231–1240. doi:10.1093/infdis/jiu007.
    1. Li J, Echeveria KL, Highes DW, Cadena JA, Bowling JE, Lewis JS. 2014. Comparison of cefazolin versus oxacillin for treatment of complicated bacteremia caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 58:5117–5124. doi:10.1128/AAC.02800-14.
    1. Carrizosa J, Santoro J, Kaye D. 1978. Treatment of experimental Staphylococcus aureus endocarditis: comparison of cephalothin, cefazolin, and methicillin. Antimicrob Agents Chemother 13:74–77. doi:10.1128/AAC.13.1.74.
    1. Bryant RE, Alford RH. 1977. Unsuccessful treatment of staphylococcal endocarditis with cefazolin. JAMA 237:569–570.
    1. Fernandez-Guerrero ML, de Gorgolas M. 2005. Cefazolin therapy for Staphylococcus aureus bacteremia. Clin Infect Dis 41:127. doi:10.1086/430833.
    1. Goldman PL, Petersdof RG. 1980. Importance of beta-lactamase inactivation in the treatment of experimental endocarditis caused by Staphylococcus aureus. J Infect Dis 141:331–337. doi:10.1093/infdis/141.3.331.
    1. Nannini EC, Singh KV, Murray BE. 2003. Relapse of type A β-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin Infect Dis 37:1194–1198. doi:10.1086/379021.
    1. Nannini EC, Stryjewski ME, Singh KV, Bourgogne A, Rude TH, Corey GR, Fowler VG Jr, Murray BE. 2009. Inoculum effect with cefazolin among clinical isolates of methicillin-susceptible Staphylococcus aureus: frequency and possible cause of cefazolin treatment failure. Antimicrob Agents Chemother 53:3437–3441. doi:10.1128/AAC.00317-09.
    1. Nannini EC, Singh KV, Arias CA, Murray BE. 24 June 2013. In vivo effect of cefazolin, daptomycin, and nafcillin in experimental endocarditis with a methicillin-susceptible Staphylococcus aureus strain showing an inoculum effect against cefazolin. Antimicrob Agents Chemother. Epub ahead of print.
    1. Wi YM, Park YK, Moon C, Ryu SY, Lee H, Ki HK, Cheong HS, Son JS, Lee JS, Kwon KT, Kim JM, Ha YE, Kang CI, Ko KS, Chung DR, Peck KR, Song JH. 2015. The cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus blood isolates: their association with dysfunctional accessory gene regulator (agr). Diagn Microbiol Infect Dis 83:286–291. doi:10.1016/j.diagmicrobio.2015.07.011.
    1. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A. 2007. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104:9451–9456. doi:10.1073/pnas.0609839104.
    1. Sakoulas G, Eliopoulos GM, Moellering RC Jr, Novick RP, Venkataraman L, Wennersten C, DeGirolami PC, Schwaber MJ, Gold HS. 2003. Accessory gene regulator (agr) group II Staphylococcus aureus: is there a relationship to the development of intermediate-level glycopeptide resistance? J Infect Dis 187:929–938. doi:10.1086/368128.
    1. Sakoulas G, Eliopoulos GM, Fowler VG Jr, Moellering RC Jr, Novick RP, Lucindo N, Yeaman MR, Bayer AS. 2005. Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlate with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob Agents Chemother 49:2687–2692. doi:10.1128/AAC.49.7.2687-2692.2005.
    1. Fischer A, Yang SJ, Bayer AS, Vaezzadeh AR, Herzig S, Stenz L, Girard M, Sakoulas G, Scheri A, Yeaman MR, Schrenzel J, Francois P. 2011. Daptomycin-resistance mechanisms in clinically-derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach. J Antimicrob Chemother 66:1696–1711. doi:10.1093/jac/dkr195.
    1. Bamberger DM, Herndon BL, Fitch J, Florkowski A, Parkhurst V. 2002. Effects of neutrophils on cefazolin activity and penicillin-binding proteins in Staphylococcus aureus abscesses. Antimicrob Agents Chemother 46:2878–2884. doi:10.1128/AAC.46.9.2878-2884.2002.

Source: PubMed

3
Prenumerera