Molecular and epidemiological characterization of Plasmodium vivax recurrent infections in southern Mexico

Lilia Gonzalez-Ceron, Jianbing Mu, Frida Santillán, Deirdre Joy, Marco A Sandoval, Gerardo Camas, Xinzhuan Su, Elena V Choy, Rene Torreblanca, Lilia Gonzalez-Ceron, Jianbing Mu, Frida Santillán, Deirdre Joy, Marco A Sandoval, Gerardo Camas, Xinzhuan Su, Elena V Choy, Rene Torreblanca

Abstract

Background: In southern Mexico, malaria transmission is low, seasonal, and persistent. Because many patients are affected by two or more malaria episodes caused by Plasmodium vivax, we carried out a study to determine the timing, frequency, and genetic identity of recurrent malaria episodes in the region between 1998 and 2008.

Methods: Symptomatic patients with more than one P. vivax infection were followed up, and blood samples were collected from primary and recurrent infections. DNA extracted from infected blood samples was analyzed for restriction fragment length polymorphism (RFLP) in genes encoding csp and msp3α, as well as size variation in seven microsatellites.

Results: One hundred and forty six parasite samples were collected from 70 patients; of these, 65 patients had one recurrent infection, four had two, and one had three recurrent infections. The majority of recurrent infections occurred within one year of the primary infection, some of which were genetically homologous to the primary infection. As the genetic diversity in the background population was high, the probability of homologous re-infection was low and the homologous recurrences likely reflected relapses. These homologous recurrent infections generally had short (< 6 months) or long (6-12 months) intervals between the primary (PI) and recurrent (RI) infections; whereas infections containing heterologous genotypes had relatively longer intervals. The epidemiological data indicate that heterologous recurrences could be either relapse or re-infections.

Conclusions: Genetic and temporal analysis of P. vivax recurrence patterns in southern Mexico indicated that relapses play an important role in initiating malaria transmission each season. The manifestation of these infections during the active transmission season allowed the propagation of diverse hypnozoite genotypes. Both short- and long-interval relapses have contributed to parasite persistence and must be considered as targets of treatment for malaria elimination programs in the region to be successful.

Figures

Figure 1
Figure 1
Distribution of recurrent intervals for P. vivax infections. All recurrent P. vivax infections documented in the records of the Malaria Control Program (Jurisdiction VII of Chiapas) during 1998–2007 (n=590, comprising 94% of all the samples excluding those with extreme longer intervals. PI, primary infection; RI, recurrent infection).
Figure 2
Figure 2
Plasmodium vivax msp3α genotypes. PCR products were digested with Alu I, and the digested products are separated side-by-side with their undigested products on agarose gels. a) Shows different genotypes indicated by capital letters underneath. b) Lanes 1, 3, 5, 7, 9, and 11 are undigested products of ~2.0 kb, and lanes 2, 4, 6, 8, 10, and 12 were the same products digested with Alu I. Lane 2 presents genotype C; lane 4, 10, and 12 present genotype B; lane 6 and 8 are mixed genotypes of A+C; c) genotype G; d) genotype D; and e) genotype H. m, 100 bp DNA ladder.
Figure 3
Figure 3
Microsatellite diversity and Plasmodium vivax infection rate in southern Mexico during a 10-year period.A. Pattern of allelic variation for 7 microsatellite loci using 474 bloodspot samples collected over 10 years. Grey, mean number of alleles (Na); white, mean number of alleles ≥ 5%; black line, mean effective heterozygosity (He = [n/(n-1)]×1- ∑pi2), shows a slight but persistent decrease over the time frame (R2 = 0.3109). B. Number of malaria cases per 1,000 people during a 10 year period across the entire study area (black bars), and within villages with positive malaria cases only (white bars). API: number of cases per year per 1,000 people.
Figure 4
Figure 4
Concordance between P. vivax cspr-msp3α and microsatellite patterns for primary and recurrent infections with different latency periods (n=39 pair samples). Each data point indicates one sample pair (PI and RI). Circles indicate paired infections with homologous cspr-msp3α genotypes. Brown circles, rare msp3α genotypes (D, E, G); orange circles, common msp3α genotypes (A, B, C). Green triangles indicate paired infections with heterologous cspr-msp3α genotypes.

References

    1. Centro Nacional de Vigilancia Epidemiológica y Control de Enfermedades. Dirección general de epidemiología: Secretaria de Salud México. .
    1. Betanzos AF. La malaria en México. Progresos y desafíos hacia su eliminación Challenges and progress in the elimination of malaria in Mexico [Challenges and progress in the elimination of malaria in Mexico. Bol Med Hosp Infant Mex. 2011;68(2):159–168.
    1. Cox FE. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010;3(1):5. doi: 10.1186/1756-3305-3-5.
    1. Baird JK, Hoffman SL. Primaquine therapy for malaria. Clin Infect Dis. 2004;39(9):1336–1345. doi: 10.1086/424663.
    1. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297. doi: 10.1186/1475-2875-10-297.
    1. Verhave JP. Experimental, therapeutic and natural transmission of Plasmodium vivax tertian malaria: scientific and anecdotal data on the history of Dutch malaria studies. Parasit Vectors. 2013;6(1):19. doi: 10.1186/1756-3305-6-19.
    1. Contacos PG, Collins WE. Letter: Malarial relapse mechanism. Trans R Soc Trop Med Hyg. 1973;67(4):617–618. doi: 10.1016/0035-9203(73)90104-1.
    1. Contacos PG, Collins WE, Jeffery GM, Krotoski WA, Howard WA. Studies on the characterization of Plasmodium vivax strains from Central America. Am J Trop Med Hyg. 1972;21(5):707–712.
    1. Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ. Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg. 2006;75:402–415.
    1. WHO, editor. Guidelines for malaria treatment. Second. Geneva; 2010. .
    1. Baird JK, Schwartz E, Hoffman SL. Prevention and treatment of vivax malaria. Curr Infect Dis Rep. 2007;9(1):39–46. doi: 10.1007/s11908-007-0021-4.
    1. Goller JL, Jolley D, Ringwald P, Biggs BA. Regional differences in the response of Plasmodium vivax malaria to primaquine as anti-relapse therapy. Am J Trop Med Hyg. 2007;76(2):203–207.
    1. Spudick JM, Garcia LS, Graham DM, Haake DA. Diagnostic and therapeutic pitfalls associated with primaquine-tolerant Plasmodium vivax. J Clin Microbiol. 2005;43(2):978–981. doi: 10.1128/JCM.43.2.978-981.2005.
    1. Secretaria de Salud. NORMA Oficial Mexicana NOM-032-SSA2-2002, Para la vigilancia epidemiológica, prevención y control de enfermedades transmitidas por vector. México; 2002. .
    1. Mendez Galvan JF, Guerrero Alvarado J, Gonalez Mora M, Perez Landa M, Quintero Cabanillas R. Evaluation of an alternative scheme of treatment for the control of malaria. Salud Publica Mex. 1984;26(6):561–572.
    1. WHO. World Malaria Report. Geneva; 2009. .
    1. Craig AA, Kain KC. Molecular analysis of strains of Plasmodium vivax from paired primary and relapse infections. J Infect Dis. 1996;174(2):373–379. doi: 10.1093/infdis/174.2.373.
    1. Chen N, Auliff A, Rieckmann K, Gatton M, Cheng Q. Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis. 2007;195(7):934–941. doi: 10.1086/512242.
    1. Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, Guthmann JP, Nosten F, Carlton J, Looareesuwan S. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis. 2007;195(7):927–933. doi: 10.1086/512241.
    1. Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE. Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun. 1999;67(1):410–412.
    1. Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites. Exp Parasitol. 2001;98(3):152–161. doi: 10.1006/expr.2001.4626.
    1. Gonzalez-Ceron L, Rodriguez MH, Chavez-Munguia B, Santillan F, Nettel JA, Hernandez-Avila JE. Plasmodium vivax: impaired escape of Vk210 phenotype ookinetes from the midgut blood bolus of Anopheles pseudopunctipennis. Exp Parasitol. 2007;115(1):59–67. doi: 10.1016/j.exppara.2006.06.001.
    1. Zakeri S, Barjesteh H, Djadid ND. Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J. 2006;5:53. doi: 10.1186/1475-2875-5-53.
    1. Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol. 1999;101(1–2):131–147.
    1. Rayner JC, Corredor V, Feldman D, Ingravallo P, Iderabdullah F, Galinski MR, Barnwell JW. Extensive polymorphism in the Plasmodium vivax merozoite surface coat protein MSP-3alpha is limited to specific domains. Parasitology. 2002;125(Pt 5):393–405.
    1. Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J. Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg. 2003;68(5):613–619.
    1. Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol. 2008;25(6):1245–1252. doi: 10.1093/molbev/msn073.
    1. Kain KC, Brown AE, Webster HK, Wirtz RA, Keystone JS, Rodriguez MH, Kinahan J, Rowland M, Lanar DE. Circumsporozoite genotyping of global isolates of Plasmodium vivax from dried blood specimens. J Clin Microbiol. 1992;30(7):1863–1866.
    1. Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourneur F, Looareesuwan S, White NJ, Snounou G. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005;4(1):20. doi: 10.1186/1475-2875-4-20.
    1. Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP. Polymorphism at the merozoite surface protein-3alpha locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg. 1999;61(4):518–525.
    1. Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert A, Tonomsing N, Maji A, Addy M, Day NP, White NJ. Genetic diversity of Plasmodium vivax in Kolkata. India. Malar J. 2006;5:71. doi: 10.1186/1475-2875-5-71.
    1. Adak T, Valecha N, Sharma VP. Plasmodium vivax polymorphism in a clinical drug trial. Clin Diagn Lab Immunol. 2001;8(5):891–894.
    1. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics. 2012;28(19):2537–2539. doi: 10.1093/bioinformatics/bts460.
    1. Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, Genton B, Beck HP, Felger I. Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis. 2009;199(7):1074–1080. doi: 10.1086/597303.
    1. Mason J. Patterns of Plasmodium vivax recurrence in a high-incidence coastal area of El Salvador, C. A. Am J Trop Med Hyg. 1975;24(4):581–585.
    1. Hulden L, Heliovaara K. Natural relapses in vivax malaria induced by Anopheles mosquitoes. Malar J. 2008;7:64. doi: 10.1186/1475-2875-7-64.
    1. Rodriguez MH, Betanzos-Reyes AF, Hernandez-Avila JE, Mendez-Galvan JF, Danis-Lozano R, Altamirano-Jimenez A. The participation of secondary clinical episodes in the epidemiology of vivax malaria during pre- and post-implementation of focal control in the state of Oaxaca. Mexico. Am J Trop Med Hyg. 2009;80(6):889–895.
    1. Lin E, Kiniboro B, Gray L, Dobbie S, Robinson L, Laumaea A, Schopflin S, Stanisic D, Betuela I, Blood-Zikursh M. Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua New Guinean children. PLoS One. 2010;5(2):e9047. doi: 10.1371/journal.pone.0009047.
    1. Hanna JN, Ritchie SA, Eisen DP, Cooper RD, Brookes DL, Montgomery BL. An outbreak of Plasmodium vivax malaria in Far North Queensland, 2002. Med J Aust. 2004;180(1):24–28.
    1. Havryliuk T, Ferreira MU. A closer look at multiple-clone Plasmodium vivax infections: detection methods, prevalence and consequences. Mem Inst Oswaldo Cruz. 2009;104(1):67–73.
    1. Rodriguez MH, Betanzos-Reyes AF. Plan to improve malaria control towards its elimination in Mesoamerica. Salud Publica Mex. 2011;53(3):S333–348.
    1. WHO. Malaria elimination. A field manual for low and moderate endemic countries. Geneva; 2007. .
    1. Kim JR, Nandy A, Maji AK, Addy M, Dondorp AM, Day NP, Pukrittayakamee S, White NJ, Imwong M. Genotyping of Plasmodium vivax reveals both short and long latency relapse patterns in Kolkata. PLoS One. 2012;7(7):e39645. doi: 10.1371/journal.pone.0039645.
    1. Cogswell FB. The hypnozoite and relapse in primate malaria. Clin Microbiol Rev. 1992;5(1):26–35.
    1. Bunnag D, Karbwang J, Thanavibul A, Chittamas S, Ratanapongse Y, Chalermrut K, Bangchang KN, Harinasuta T. High dose of primaquine in primaquine resistant vivax malaria. Trans R Soc Trop Med Hyg. 1994;88(2):218–219. doi: 10.1016/0035-9203(94)90305-0.
    1. Carmona-Fonseca J, Maestre A. Prevention of Plasmodium vivax malaria recurrence: efficacy of the standard total dose of primaquine administered over 3 days. Acta Trop. 2009;112(2):188–192. doi: 10.1016/j.actatropica.2009.07.024.
    1. Hanf M, Stephani A, Basurko C, Nacher M, Carme B. Determination of the Plasmodium vivax relapse pattern in Camopi. French Guiana Malar J. 2009;8:278. doi: 10.1186/1475-2875-8-278.
    1. Boulos M, Amato Neto V, Dutra AP, Di Santi SM, Shiroma M. Frequency of malaria relapse due to Plasmodium vivax in a non-endemic region (Sao Paulo, Brazil) Rev Inst Med Trop Sao Paulo. 1991;33(2):143–146. doi: 10.1590/S0036-46651991000200009.
    1. Orjuela-Sanchez P, da Silva NS, da Silva-Nunes M, Ferreira MU. Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia. Am J Trop Med Hyg. 2009;81(6):961–968. doi: 10.4269/ajtmh.2009.09-0337.
    1. Coatney GR, Cooper WC, Young MD. Studies in human malaria. XXX. A summary of 204 sporozoite-induced infections with the Chesson strain of Plasmodium vivax. J Natl Malar Soc. 1950;9(4):381–396.
    1. White NJ. In: Manson's Tropical Diseases. 21. Cook GC, Zumla AI, editor. London: WB Sounders; 2003. Malaria; pp. 1205–1295.
    1. Moon SU, Lee HW, Kim JY, Na BK, Cho SH, Lin K, Sohn WM, Kim TS. High frequency of genetic diversity of Plasmodium vivax field isolates in Myanmar. Acta Trop. 2009;109(1):30–36. doi: 10.1016/j.actatropica.2008.09.006.
    1. Haghdoost AA, Mazhari S, Bahaadini K. Estimating the relapse risk of Plasmodium vivax in Iran under national chemotherapy scheme using a novel method. J Vector Borne Dis. 2006;43(4):168–172.
    1. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14.
    1. Maslin J, Cuguillere A, Bonnet D, Martet G. Malaria attack: a very late relapse due to Plasmodium vivax. Bull Soc Pathol Exot. 1997;90(1):25–26.

Source: PubMed

3
Prenumerera