Phase I/II study of temsirolimus for patients with unresectable Hepatocellular Carcinoma (HCC)- a correlative study to explore potential biomarkers for response

Winnie Yeo, Stephen L Chan, Frankie K F Mo, Cheuk M Chu, Joyce W Y Hui, Joanne H M Tong, Anthony W H Chan, Jane Koh, Edwin P Hui, Herbert Loong, Kirsty Lee, Leung Li, Brigette Ma, Ka F To, Simon C H Yu, Winnie Yeo, Stephen L Chan, Frankie K F Mo, Cheuk M Chu, Joyce W Y Hui, Joanne H M Tong, Anthony W H Chan, Jane Koh, Edwin P Hui, Herbert Loong, Kirsty Lee, Leung Li, Brigette Ma, Ka F To, Simon C H Yu

Abstract

Background: The oncogenic PI3K/Akt/mTOR pathway is frequently activated in HCC. Data on the mTOR inhibitor, temsirolimus, is limited in HCC patients with concomitant chronic liver disease. The objectives of this study were: (1) In phase I, to determine DLTs and MTD of temsirolimus in HCC patients with chronic liver disease; (2) In phase II, to assess activity of temsirolimus in HCC, and (3) to explore potential biomarkers for response.

Methods: Major eligibility criteria included histologically confirmed advanced HCC and adequate organ function. In Phase I part of the study, temsirolimus was given weekly in 3-weekly cycle; dose levels were 20 mg (level 1), 25 mg (level 2) and 30 mg (level 3). The MTD was used in the subsequent phase II part; the primary endpoint was PFS and secondary endpoints were response and OS. In addition, exploratory analysis was conducted on pre-treatment tumour tissues to determine stathmin, pS6, pMTOR or p-AKT expressions as potential biomarkers for response. Overall survival and PFS were calculated using the Kaplan-Meier method. Reassessment CT scans were done every 6 weeks. All adverse events were reported using CTCAE v3.

Results: The Phase I part consisted of 19 patients, 2 of 6 patients at level 3 experienced DLT; dose level 2 was determined to be the MTD. The phase II part consisted of 36 patients. Amongst 35 assessable patients, there were 1 PR, 20 SD and 14 PD. Overall, the median PFS was 2.83 months (95% C.I. 1.63-5.24). The median OS was 8.89 months (95% C.I. 5.89-13.30). Grade ≥ 3 that occurred in > 10% of patients included thrombocytopenia (4) and hyponatraemia (4). Exploratory analysis revealed that disease stabilization (defined as CR + PR + SD > 12 weeks) in tumours having high and low pMTOR H-scores to be 70% and 29% respectively (OR 5.667, 95% CI 1.129-28.454, p = 0.035).

Conclusions: In HCC patients with chronic liver disease, the MTD of temsirolimus was 25 mg weekly in a 3-week cycle. The targeted PFS endpoint was not reached. However, further studies to identify appropriate patient subgroup are warranted.

Trial registration: This study has been registered in ClinicalTrials.gov (Id: NCT00321594) on 1 December 2010.

Figures

Figure 1
Figure 1
(a) Progression-free survival; (b) Overall survival of patients in the phase II study.
Figure 2
Figure 2
Immunohistochemical staining of pretreatment tumour tissues. A. high stathmin H-score (2/300). B. low stathmin H-score (210/300). C. high pS6 H-score (0/300). D. low pS6 H-score (270/300). E. high pMTOR H-score (3/300). F. low pMTOR H-score (105/300). G. high p-AKT H-score (5/300). H. low p-AKT H-score (240/300).

References

    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74.
    1. Leading cancer sites in Hong Kong in 2012. Hong Kong Cancer Registry. Hospital Authority 2014; 1: 1.
    1. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. doi: 10.1056/NEJMoa0708857.
    1. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34. doi: 10.1016/S1470-2045(08)70285-7.
    1. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135:1972–83. doi: 10.1053/j.gastro.2008.08.008.
    1. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10:8421–5. doi: 10.1158/1078-0432.CCR-04-0941.
    1. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the mTOR pathway in hepatocellular carcinoma: Current state and future trends. J Hepatol. 2014;60(4):855–65. doi: 10.1016/j.jhep.2013.11.031.
    1. Menon KV, Hakeem AR, Heaton ND. Meta-analysis: recurrence and survival following the use of sirolimus in liver transplantation for hepatocellular carcinoma. Aliment Pharmacol. 2013;37(4):411–9. doi: 10.1111/apt.12185.
    1. Escudier B, Eisen T, Porta C, Patard JJ, Khoo V, Algaba F, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(suppl 7):vii65–71. doi: 10.1093/annonc/mds227.
    1. Kudes G, Carducci M, Tomczak P, Beard C, Bhayani S, Bolger GB, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–228. doi: 10.1056/NEJMoa066838.
    1. Baselga J, Campone M, Piccart M, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9. doi: 10.1056/NEJMoa1109653.
    1. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514–23. doi: 10.1056/NEJMoa1009290.
    1. Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, et al. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol. 2007;46:840–8. doi: 10.1016/j.jhep.2006.11.021.
    1. Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, et al. Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther. 2011;10:1007–17. doi: 10.1158/1535-7163.MCT-10-0666.
    1. Thomas HE, Mercer CA, Carnevalli LS, Park J, Andersen JB, Conner EA, et al. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma. Sci Transl Med. 2012;4:139ra84. doi: 10.1126/scitranslmed.3003923.
    1. Huynh H, Chow KH, Soo KC, Toh HC, Choo SP, Foo KF, et al. RAD001 (everolimus) inhibits tumor growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med. 2009;13:1371–80. doi: 10.1111/j.1582-4934.2008.00364.x.
    1. Zhu AX, Abrams T, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117:5094–102. doi: 10.1002/cncr.26165.
    1. Shiah HS, Chen CY, Hsiao CF, Hsiao CF, Lin YJ, Su WC, et al. Randomised clinical trial: comparison of two everolimus dosing schedules in patients with advanced hepatocellular carcinoma. Aliment Pharamcol Ther. 2013;37(1):62–73. doi: 10.1111/apt.12132.
    1. Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, et al. Phase 3 study of everolimus for advanced HCC that progressed during or after sorafenib. JAMA. 2014;312(1):57–67. doi: 10.1001/jama.2014.7189.
    1. Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 2009;101(10):708–20. doi: 10.1093/jnci/djp079.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92:205–16. doi: 10.1093/jnci/92.3.205.
    1. Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46(10):5419–25.
    1. Metz CE. Basic principles of ROC analysis. Semin Nucl Med. 1978;8:283–98. doi: 10.1016/S0001-2998(78)80014-2.
    1. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–77.
    1. Chan SL, Mo FKF, Johnson PJ, Hui EP, Ma BB, Ho WM, et al. New Utility of an Old Marker: Serial α-fetoprotein measurement in predicting radiologic response and survival of patients with hepatocellular carcinoma undergoing systemic chemotherapy. J Clin Oncol. 2009;27(3):446–52. doi: 10.1200/JCO.2008.18.8151.
    1. European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer EASL–EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43. doi: 10.1016/j.jhep.2011.12.001.
    1. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–48. doi: 10.1038/nrc1362.
    1. Li W, Tan D, Zhang Z, Liang JJ, Brown RE. Activation of Akt-mTOR-p70S6K pathway in angiogenesis in hepatocellular carcinoma. Oncol Rep. 2008;20(4):713–9.
    1. Gonzalez-Angulo AM, Blumenschein GR., Jr Defining biomarkers to predict sensitivity to PI3K/Akt/mTOR pathway inhibitors in breast cancer. Cancer Treat Rev. 2013;39(4):313–20. doi: 10.1016/j.ctrv.2012.11.002.
    1. Loi S, Michiels S, Baselga J, Bartlett JM, Singhal SK, Sabine VS, et al. PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS One. 2013;8(1):e53292. doi: 10.1371/journal.pone.0053292.
    1. Mackay HJ, Eisenhauer EA, Kamel-Reid S, Tsao M, Clarke B, Karakasis K, et al. Molecular determinants of outcome with mammalian target of rapamycin inhibition in endometrial cancer. Cancer. 2014;120(4):603–10. doi: 10.1002/cncr.28414.
    1. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005;24(8):1477–80. doi: 10.1038/sj.onc.1208304.
    1. Tanaka Y, Kanai F, Tada M, Asaoka Y, Guleng B, Jazag A, et al. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene. 2006;25(20):2950–2. doi: 10.1038/sj.onc.1209311.
    1. Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signaling inputs, substrates and feedback mechanisms. Cell Signal. 2009;21(6):827–35. doi: 10.1016/j.cellsig.2009.01.012.
    1. Mamane Y, Petroulakis E, Lebacquer O, Sonenberg N. mTOR, translation initiation and cancer. Oncogene. 2006;25(48):6416–22. doi: 10.1038/sj.onc.1209888.
    1. Baba HA, Wohlschlaeger J, Cicinnati R, Hilgard P, Lang H, Sotiropoulos GC, et al. Phosphorylation of p70S6 kinase predicts overall survival in patients with clear margin-resected hepatocellular carcinoma. Liver Int. 2009;29(3):399–405. doi: 10.1111/j.1478-3231.2008.01798.x.
    1. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–19. doi: 10.1038/nrg1879.
    1. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–63. doi: 10.1200/JCO.2004.02.141.
    1. Saala LH, Johanssonc P, Holmb K, Gruvberger-Saal SK, She QB, Maurer M, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A. 2007;104(18):7564–9. doi: 10.1073/pnas.0702507104.
    1. Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 2010;27(2):255–61. doi: 10.1007/s12032-009-9201-4.
    1. Yu G, Wang J, Chen Y, Wang X, Pan J, Li G, et al. Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res. 2009;15(5):1821–9. doi: 10.1158/1078-0432.CCR-08-2138.
    1. Lee D, Do IG, Choi K, Jang KT, Choi D, Heo JS, et al. The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol. 2012;25(1):131–9. doi: 10.1038/modpathol.2011.133.
    1. Sieghart W, Fuereder T, Schmid K, Cejka D, Werzowa J, Wrba F, et al. Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation. 2007;83(4):425–32. doi: 10.1097/01.tp.0000252780.42104.95.
    1. Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell. 2006;10:159–70. doi: 10.1016/j.ccr.2006.07.003.
    1. Stoeltzing O, Meric-Bernstam F, Ellis L. Intracellular signaling in tumor and endothelial cells: The expected, and yet again, the unexpected. Cancer Cell. 2006;10:89–91. doi: 10.1016/j.ccr.2006.07.013.
    1. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68. doi: 10.1016/j.molcel.2006.03.029.
    1. Kelley RK, Nimeiri HS, Munster PN, Vergo MT, Huang Y, Li CM, et al. Temsirolimus combined with sorafenib in hepatocellular carcinoma: a phase I dose-finding trial with pharmacokinetic and biomarker correlates. Ann Oncol. 2013;24:1900–7. doi: 10.1093/annonc/mdt109.
    1. Zhou Q, Wong CH, Lau CP, Hui CW, Lui VW, Chan SL, et al. Enhanced antitumor activity with combining effect of mTOR inhibition and microtubule stabilization in hepatocellular carcinoma. Int J Hepatol. 2013;103830.
    1. Zhou Q, Lui VW, Lau CP, Cheng SH, Ng MH, Cai Y, et al. Sustained antitumor activity by co-targeting mTOR and the microtubule with temsirolimus/vinblastine combination in hepatocellular carcinoma. Biochem Pharmacol. 2012;83:1146–58. doi: 10.1016/j.bcp.2012.01.013.
    1. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338:221. doi: 10.1126/science.1226344.

Source: PubMed

3
Prenumerera