Differential effects of two fermentable carbohydrates on central appetite regulation and body composition

Tulika Arora, Ruey Leng Loo, Jelena Anastasovska, Glenn R Gibson, Kieran M Tuohy, Raj Kumar Sharma, Jonathan R Swann, Eddie R Deaville, Michele L Sleeth, E Louise Thomas, Elaine Holmes, Jimmy D Bell, Gary Frost, Tulika Arora, Ruey Leng Loo, Jelena Anastasovska, Glenn R Gibson, Kieran M Tuohy, Raj Kumar Sharma, Jonathan R Swann, Eddie R Deaville, Michele L Sleeth, E Louise Thomas, Elaine Holmes, Jimmy D Bell, Gary Frost

Abstract

Background: Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and β-glucan) exert similar effects on body composition and central appetite regulation in high fat fed mice.

Methodology/principal findings: Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w) fermentable carbohydrate, 10% (w/w) inulin or 10% (w/w) β-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance ((1)H NMR), colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI) and manganese enhanced MRI (MEMRI), respectively, PYY (peptide YY) concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and β-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in β-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. β-Glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state.

Conclusions/significance: Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. β-Glucan appears to suppress neuronal activity in the hypothalamic appetite centers. Differential effects of fermentable carbohydrates open new possibilities for nutritionally targeting appetite regulation and body composition.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flowchart showing the study design.
Figure 1. Flowchart showing the study design.
Figure 2. The effect of inulin and…
Figure 2. The effect of inulin and β-glucan supplementation over the 8-week dietary interventional period (a) weekly cumulative body weight gain, n = 12 per group (b) weekly cumulative food intake over the 8 week dietary intervention period, n = 12 per group. * = p
Key: HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+β-glucan.
Figure 3. The effect of inulin and…
Figure 3. The effect of inulin and β-glucan supplementation on cecal and fecal microbial contents over the 8-week dietary interventional period (a) cecal microflora groups, n = 6 per group (b) fecal total bacteria microflora at week 0, 4 and 8, n = 6 per group: (c) fecal mouse intestinal bacteria, (d) fecal Eubacterium rectal-Clostridium coccoides; (e) fecal Lactobacilli; and (f) fecal Bifidobacteria. * = p<0.05, ** = p<0.01, *** = p<0.001.
Key: HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+β-glucan.
Figure 4. Representative baseline (pre-contrast) MRI images…
Figure 4. Representative baseline (pre-contrast) MRI images of the mouse brain showing assignment of regions of interest (ROIs) in various brain areas from which signal intensities (SI) were obtained.
Time course of changes in SI (as a percentage of baseline) before and at various times after IV manganese chloride infusion in the (a) ARC, (b) VMH (c) PVN (d) PE (e) NTS. Data are presented as means of four consecutive image acquisitions±SEM. * = p

Figure 5. Multivariate statistical analysis of the…

Figure 5. Multivariate statistical analysis of the fecal 1 H NMR spectra.

OPLS-DA cross validated scores…

Figure 5. Multivariate statistical analysis of the fecal 1H NMR spectra.
OPLS-DA cross validated scores plots for mice fed with (a) HFD-C and HDF-BG; and (b) HFD-C and HFD-I. The corresponding coefficient plots indicated fecal metabolic differences for (c) HFD-C and HFD-BG; and (d) HFD-C and HFD-I. Insets show an expansion of the aromatic region. HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+β-glucan. 1, Bile acids; 2, Butyrate; 3, Isoleucine, leucine and valine; 4, Propionate (tentative); 5, Unknown at δ 1.17 (doublets) ; 6, Lactate; 7, Alanine; 8, Acetate; 9 Glutamate (tentative); 10, Succinate; 11, Aspartate; 12, Citrate; 13, Lysine; 14, Glycine; 15, Glucose and amino acids; 16, Glucose; 17, Uracil; 18, Fumarate; 19, Thyrosine; 20, Phenylalanine; 21, Histidine; 22, Unknown at δ7.84 (doublets); 23, Unknown at δ8.02 (doublets); 24, Unknown at δ8.20 (doublets); 25, Amine related compounds.
Figure 5. Multivariate statistical analysis of the…
Figure 5. Multivariate statistical analysis of the fecal 1H NMR spectra.
OPLS-DA cross validated scores plots for mice fed with (a) HFD-C and HDF-BG; and (b) HFD-C and HFD-I. The corresponding coefficient plots indicated fecal metabolic differences for (c) HFD-C and HFD-BG; and (d) HFD-C and HFD-I. Insets show an expansion of the aromatic region. HFD-C, high fat diet control; HFD-I, high fat diet+inulin; HFD-BG, high fat diet+β-glucan. 1, Bile acids; 2, Butyrate; 3, Isoleucine, leucine and valine; 4, Propionate (tentative); 5, Unknown at δ 1.17 (doublets) ; 6, Lactate; 7, Alanine; 8, Acetate; 9 Glutamate (tentative); 10, Succinate; 11, Aspartate; 12, Citrate; 13, Lysine; 14, Glycine; 15, Glucose and amino acids; 16, Glucose; 17, Uracil; 18, Fumarate; 19, Thyrosine; 20, Phenylalanine; 21, Histidine; 22, Unknown at δ7.84 (doublets); 23, Unknown at δ8.02 (doublets); 24, Unknown at δ8.20 (doublets); 25, Amine related compounds.

References

    1. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101: 15718–15723.
    1. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102: 11070–11075.
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023.
    1. Kleessen B, Hartmann L, Blaut M (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr 86: 291–300.
    1. Snart J, Bibiloni R, Grayson T, Lay C, Zhang H, et al. (2006) Supplementation of the diet with high-viscosity beta-glucan results in enrichment for lactobacilli in the rat cecum. Appl Environ Microbiol 72: 1925–1931.
    1. Tuohy KM, Kolida S, Lustenberger AM, Gibson GR (2001) The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides–a human volunteer study. Br J Nutr 86: 341–348.
    1. Cani PD, Neyrinck AM, Maton N, Delzenne NM (2005) Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes Res 13: 1000–1007.
    1. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89: 1751–1759.
    1. Vitaglione P, Lumaga RB, Stanzione A, Scalfi L, Fogliano V (2009) beta-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite 53: 338–344.
    1. Kaji I, Karaki SI, Tanaka R, Kuwahara A (2010) Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Histol
    1. So PW, Yu WS, Kuo YT, Wasserfall C, Goldstone AP, et al. (2007) Impact of resistant starch on body fat patterning and central appetite regulation. PLoS One 2: e1309.
    1. Martin-Pelaez S, Gibson GR, Martin-Orue SM, Klinder A, Rastall RA, et al. (2008) In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. FEMS Microbiol Ecol 66: 608–619.
    1. Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted Probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11: 3–12.
    1. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, et al. (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61: 3069–3075.
    1. Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, et al. (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64: 3336–3345.
    1. Salzman NH, de JH, Paterson Y, Harmsen HJ, Welling GW, et al. (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148: 3651–3660.
    1. Saric J, Li JV, Wang Y, Keiser J, Bundy JG, et al. (2008) Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery. PLoS Negl Trop Dis 2: e254.
    1. Richardson AJ, Calder AG, Stewart CS, Smith A (1989) Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Letters in Applied Microbiology 9: 5–8.
    1. Anastasovska J, Arora T, Sanchez Canon GJ, Parkinson JR, Touhy K, et al. (2012) Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity (Silver Spring)
    1. Parkinson JR, Chaudhri OB, Bell JD (2009) Imaging appetite-regulating pathways in the central nervous system using manganese-enhanced magnetic resonance imaging. Neuroendocrinology 89: 121–130.
    1. Patel AD, Stanley SA, Murphy KG, Frost GS, Gardiner JV, et al. (2006) Ghrelin stimulates insulin-induced glucose uptake in adipocytes. Regul Pept 134: 17–22.
    1. Frost GS, Keogh BE, Smith D, Leeds AR, Dornhorst A (1998) Reduced adipocyte insulin sensitivity in Caucasian and Asian subjects with coronary heart disease. Diabet Med 15: 1003–1009.
    1. Frost G, Leeds A, Trew G, Margara R, Dornhorst A (1998) Insulin sensitivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 47: 1245–1251.
    1. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, et al. (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147: 3–8.
    1. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, et al. (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89: 1070–1077.
    1. Kuo YT, Herlihy AH, So PW, Bell JD (2006) Manganese-enhanced magnetic resonance imaging (MEMRI) without compromise of the blood-brain barrier detects hypothalamic neuronal activity in vivo. NMR Biomed 19: 1028–1034.
    1. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2002) Multi- and Megavariate Data Analysis. Principles and Applications. Umetrics Academy
    1. Cloarec O, Dumas ME, Trygg J, Craig A, Barton RH, et al. (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem 77: 517–526.
    1. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, et al. (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77: 1282–1289.
    1. Choi JS, Kim H, Jung MH, Hong S, Song J (2010) Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol Nutr Food Res 54: 1004–1013.
    1. Cani PD, Dewever C, Delzenne NM (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 92: 521–526.
    1. Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van HA, et al. (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARgamma-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22: 712–722.
    1. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374–2383.
    1. McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39: 338–342.
    1. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, et al. (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60: 2775–2786.
    1. Parkinson JR, Dhillo WS, Small CJ, Chaudhri OB, Bewick GA, et al. (2008) PYY3-36 injection in mice produces an acute anorexigenic effect followed by a delayed orexigenic effect not observed with other anorexigenic gut hormones. Am J Physiol Endocrinol Metab 294: E698–E708.
    1. Parkinson JR, Chaudhri OB, Kuo YT, Field BC, Herlihy AH, et al. (2009) Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). Neuroimage 44: 1022–1031.
    1. Wanders AJ, van den Borne JJ, de GC, Hulshof T, Jonathan MC, et al. (2011) Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev 12: 724–739. 10.
    1. Zhou J, Hegsted M, McCutcheon KL, Keenan MJ, Xi X, et al. (2006) Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity (Silver Spring) 14: 683–689.
    1. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, et al. (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295: E1160–E1166.
    1. Ge H, Li X, Weiszmann J, Wang P, Baribault H, et al. (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149: 4519–4526.
    1. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, et al. (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108: 8030–8035.

Source: PubMed

3
Prenumerera