The impact of exercise intensity on whole body and adipose tissue metabolism during energy restriction in sedentary overweight men and postmenopausal women

Jean-Philippe Walhin, Natalie C Dixon, James A Betts, Dylan Thompson, Jean-Philippe Walhin, Natalie C Dixon, James A Betts, Dylan Thompson

Abstract

This study aimed to establish whether vigorous-intensity exercise offers additional adipose-related health benefits and metabolic improvements compared to energy-matched moderate-intensity exercise. Thirty-eight sedentary overweight men (n = 24) and postmenopausal women (n = 14) aged 52 ± 5 years (mean ± standard deviations [SD]) were prescribed a 3-week energy deficit (29302 kJ∙week-1) achieved by increased isocaloric moderate or vigorous-intensity exercise (+8372 kJ∙week-1) and simultaneous restricted energy intake (-20930 kJ∙week-1). Participants were randomly assigned to either an energy-matched vigorous (VIG; n = 18) or moderate (MOD; n = 20) intensity exercise group (five times per week at 70% or 50% maximal oxygen uptake, respectively). At baseline and follow-up, fasted blood samples and abdominal subcutaneous adipose tissue biopsies were obtained and oral glucose tolerance tests conducted. Body mass was reduced similarly in both groups (∆ 2.4 ± 1.1 kg and ∆ 2.4 ± 1.4 kg, respectively, P < 0.05). Insulinemic responses to a standard glucose load decreased similarly at follow-up relative to baseline in VIG (∆ 8.6 ± 15.4 nmol.120 min.l-1) and MOD (∆ 5.4 ± 8.5 nmol.120 min.l-1; P < 0.05). Expression of SREBP-1c and FAS in adipose tissue was significantly down-regulated, whereas expression of PDK4 and hormone-sensitive lipase (HSL) was significantly up-regulated in both groups (P < 0.05). Thus, when energy expenditure and energy deficit are matched, vigorous or moderate-intensity exercise combined with energy restriction provide broadly similar (positive) changes in metabolic control and adipose tissue gene expression.

Keywords: Adipose tissue; energy restriction; exercise intensity; gene expression; metabolism.

© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Serum insulin 2 h iAUC (A) for the MOD group (n = 15) and the VIG group (n = 14), plasma glucose 2 h iAUC (B; means ± CI) for the MOD group (n = 16) and the VIG group (n = 12) before and after 3 weeks of energy restriction with moderate‐intensity or vigorous‐intensity physical exercise. There were technical problems with the cannula on a few occasions and this explains the reduced sample size for some outcomes. † denotes a main effect of day (= 0.005) * denotes a dayxgroup interaction (= 0.04). The dotted line denotes the individual data points from women while the continuous line denotes the individual data points from men.
Figure 2
Figure 2
Relative gene expression of several key genes measured in adipose tissue at baseline and follow‐up for the MOD group (n = 12) and the VIG group (n = 12). Dashed line represents no change. Data normalized to PPIA, baseline, and internal calibrator. Any change score (normalized follow‐up data vs. normalized baseline data) that was over 3 SD from the mean (11 data points out of 360) were excluded from the presentation shown in this Figure, but were included in the statistical analysis which used the logged values. Samples outside the detectable limit (Ct>35; n = 8) were excluded from the analysis. FAS (MOD, n = 11), IL18 (MOD, n = 8), IL6 (MOD, n = 9; VIG, n = 11). Values are means ± SEM. † main effect of day (i.e., Day 1 vs. Day 21 both groups; P ≤ 0.05).

References

    1. Atkinson, G. 2002. Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multi‐factorial designs. Phys. Ther. Sport. 3:191–203.
    1. Badman, M. K. , and Flier J. S.. 2007. The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 132:2103–2115.
    1. Balducci, S. , Zanuso S., Nicolucci A., Fernando F., Cavallo S., Cardelli P., et al. 2010. Anti‐inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight toss. Nutr. Metab. Cardiovas. 20:608–617.
    1. Bouchard, L. , Rabasa‐Lhoret R., Faraj M., Lavoie M. E., Mill J., Perusse L., et al. 2010. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am. J. Clin. Nutr. 91:309–320.
    1. Brochu, M. , Poehlman E. T., and Ades P. A.. 2000. Obesity, body fat distribution, and coronary artery disease. J. Cardpulm. Rehabil. 20:96–108.
    1. Capel, F. , Klimcakova E., Viguerie N., Roussel B., Vitkova M., Kovacikova M., et al. 2009. Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58:1558–1567.
    1. Claycombe, K. J. , Xue B., Mynatt R. L., Wilkison W. O., Zemel M. B., and Moustaid N.. 1998. Regulation of leptin by agouti and insulin. Faseb. J. 12:A505–A505.
    1. Fontana, L. , Villareal D. T., Weiss E. P., Racette S. B., Steger‐May K., Klein S., et al. 2007. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am. J. Physiol. Endocrinol. Metab. 293:E197–E202.
    1. Franklin, B. A. 2000. ACSM's Guidelines for exercise testing and prescription. Lippincott Williams and Wilkins,Philadelphia, PA.
    1. Friedman, J. M. 2009. Leptin at 14 y of age: an ongoing story. Am. J. Clin. Nutr. 89:973S–979S.
    1. Gore, C. J. , and Withers R. T.. 1990. The effect of exercise intensity and duration on the oxygen deficit and excess post‐exercise oxygen consumption. Eur. J. Appl. Physiol. Occup. Physiol. 60:169–174.
    1. Hammer, S. , Snel M., Lamb H. J., Jazet I. M., van der Meer R. W., Pijl H., et al. 2008. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J. Am. Coll. Cardiol. 52:1006–1012.
    1. Holm, C. , Osterlund T., Laurell H., and Contreras J. A.. 2000. Molecular mechanisms regulating hormone‐sensitive lipase and lipolysis. Annu. Rev. Nutr. 20:365–393.
    1. Hopkins, W. G. , Marshall S. W., Batterham A. M., and Hanin J.. 2009. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41:3–13.
    1. Hsueh, W. A. , and Buchanan T. A.. 1994. Obesity and hypertension. Endocrinol. Metab. Clin. North Am. 23:405–427.
    1. Imayama, I. , Ulrich C. M., Alfano C. M., Wang C., Xiao L., Wener M. H., et al. 2012. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res. 72:2314–2326.
    1. Jeoung, N. H. , Wu P., Joshi M. A., Jaskiewicz J., Bock C. B., Depaoli‐Roach A. A., et al. 2006. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Biochem. J. 397:417–425.
    1. Jocken, J. W. , Langin D., Smit E., Saris W. H., Valle C., Hul G. B., et al. 2007. Adipose triglyceride lipase and hormone‐sensitive lipase protein expression is decreased in the obese insulin‐resistant state. J. Clin. Endocrinol. Metab. 92:2292–2299.
    1. Jorge, M. L. , de Oliveira V. N., Resende N. M., Paraiso L. F., Calixto A., Diniz A. L., et al. 2011. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism 60:1244–1252.
    1. Kang, J. , Robertson R. J., Hagberg J. M., Kelley D. E., Goss F. L., DaSilva S. G., et al. 1996. Effect of exercise intensity on glucose and insulin metabolism in obese individuals and obese NIDDM patients. Diabetes Care 19:341–349.
    1. Kwon, H. S. , and Harris R. A.. 2004. Mechanisms responsible for regulation of pyruvate dehydrogenase kinase 4 gene expression. Adv. Enzyme Regul. 44:109–121.
    1. Lagerpusch, M. , Bosy‐Westphal A., Kehden B., Peters A., and Muller M. J.. 2011. Effects of brief perturbations in energy balance on indices of glucose homeostasis in healthy lean men. Int. J. Obes. (Lond) 36:1094–1001.
    1. Large, V. , Arner P., Reynisdottir S., Grober J., Van Harmelen V., Holm C., et al. 1998. Hormone‐sensitive lipase expression and activity in relation to lipolysis in human fat cells. J. Lipid Res. 39:1688–1695.
    1. Larson‐Meyer, D. E. , Heilbronn L. K., Redman L. M., Newcomer B. R., Frisard M. I., Anton S., et al. 2006. Effect of calorie restriction with or without exercise on insulin sensitivity, beta‐cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care 29:1337–1344.
    1. Livak, K. J. , and Schmittgen T. D.. 2001. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods 25:402–408.
    1. Macdiarmid, J. , and Blundell J.. 1998. Assessing dietary intake: Who, what and why of under‐reporting. Nutr. Res. Rev. 11:231–253.
    1. Masson, M. E. J. , and Loftus G. R.. 2003. Using confidence intervals for graphically based data interpretation. Can. J. Exp. Psychol. 57:203–220.
    1. Matthews, J. N. , Altman D. G., Campbell M. J., and Royston P.. 1990. Analysis of serial measurements in medical research. BMJ 300:230–235.
    1. Maxwell, S. E. Delaney H. D.. 1990. Designing Experiments and Analyzing Data: a Model Comparison Perspective. Pp. 109 Belmont, Wadsworth.
    1. Minehira, K. , Bettschart V., Vidal H., Vega N., Di Vetta V., Rey V., et al. 2003. Effect of carbohydrate overfeeding on whole body and adipose tissue metabolism in humans. Obes. Res. 11:1096–1103.
    1. Minehira, K. , Vega N., Vidal H., Acheson K., and Tappy L.. 2004. Effect of carbohydrate overfeeding on whole body macronutrient metabolism and expression of lipogenic enzymes in adipose tissue of lean and overweight humans. Int. J. Obes. Relat. Metab. Disord. 28:1291–1298.
    1. Nathan, D. M. , Buse J. B., Davidson M. B., Ferrannini E., Holman R. R., Sherwin R., et al. 2009. American Diabetes A, and European Association for Study of D. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203.
    1. Nicklas, B. J. , Wang X., You T., Lyles M. F., Demons J., Easter L., et al. 2009. Effect of exercise intensity on abdominal fat loss during calorie restriction in overweight and obese postmenopausal women: a randomized, controlled trial. Am. J. Clin. Nutr. 89:1043–1052.
    1. Oshida, Y. , Yamanouchi K., Hayamizu S., and Sato Y.. 1989. Long‐term mild jogging increases insulin action despite no influence on body mass index or VO2 max. J. Appl. Physiol. 66:2206–2210.
    1. Oswal, A. , and Yeo G.. 2010. Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity (Silver Spring) 18:221–229.
    1. Poirier, P. , and Despres J. P.. 2001. Exercise in weight management of obesity. Cardiol. Clin. 19:459–470.
    1. Repa, J. J. , Liang G. S., Ou J. F., Bashmakov Y., Lobaccaro J. M. A., Shimomura I., et al. 2000. Regulation of mouse sterol regulatory element‐binding protein‐1c gene (SREBP‐1c) by oxysterol receptors, LXR alpha and LXR beta. Gene Dev. 14:2819–2830.
    1. Selvin, E. , Paynter N. P., and Erlinger T. P.. 2007. The effect of weight loss on C‐reactive protein: a systematic review. Arch. Intern. Med. 167:31–39.
    1. Swain, D. P. , and Franklin B. A.. 2006. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am. J. Cardiol. 97:141–147.
    1. Taylor, H. L. , Buskirk E., and Henschel A.. 1955. Maximal oxygen intake as an objective measure of cardio‐respiratory performance. J. Appl. Physiol. 8:73–80.
    1. Thompson, D. , Batterham A. M., Bock S., Robson C., and Stokes K.. 2006. Assessment of low‐to‐moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched‐equation modeling. J. Nutr. 136:1037–1042.
    1. Thompson, D. , Markovitch D., Betts J. A., Mazzatti D., Turner J., and Tyrrell R. M.. 2010. Time course of changes in inflammatory markers during a 6‐mo exercise intervention in sedentary middle‐aged men: a randomized‐controlled trial. J. Appl. Physiol. 108:769–779.
    1. Tjonna, A. E. , Lee S. J., Rognmo O., Stolen T. O., Bye A., Haram P. M., et al. 2008. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome ‐ A pilot study. Circulation 118:346–354.
    1. Trapp, E. G. , Chisholm D. J., Freund J., and Boutcher S. H.. 2008. The effects of high‐intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int. J. Obes. (Lond) 32:684–691.
    1. Tsintzas, K. , Jewell K., Kamran M., Laithwaite D., Boonsong T., Littlewood J., et al. 2006. Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans. J. Physiol. 575:291–303.
    1. Walhin, J. P. , Richardson J. D., Betts J. A., and Thompson D.. 2013. Exercise counteracts the effects of short‐term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J. Physiol. 591:6231–6243.
    1. Weiss, E. P. , Racette S. B., Villareal D. T., Fontana L., Steger‐May K., Schechtman K. B., et al. 2006. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am. J. Clin. Nutr. 84:1033–1042.
    1. Westerterp, K. R. 2004. Diet induced thermogenesis. Nutr. Metab. (Lond) 1:5.
    1. Witteman, J. C. , Grobbee D. E., Kok F. J., Hofman A., and Valkenburg H. A.. 1989. Increased risk of atherosclerosis in women after the menopause. BMJ 298:642–644.
    1. Wolever, T. M. , and Jenkins D. J.. 1986. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am. J. Clin. Nutr. 43:167–172.
    1. Wolever, T. M. , Gibbs A. L., Mehling C., Chiasson J. L., Connelly P. W., Josse R. G., et al. 2008. The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1‐y controlled trial of low‐glycemic‐index dietary carbohydrate in type 2 diabetes: no effect on glycated hemoglobin but reduction in C‐reactive protein. Am. J. Clin. Nutr. 87:114–125.
    1. Wu, P. , Blair P. V., Sato J., Jaskiewicz J., Popov K. M., and Harris R. A.. 2000. Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch. Biochem. Biophys. 381:1–7.
    1. You, T. , Berman D. M., Ryan A. S., and Nicklas B. J.. 2004. Effects of hypocaloric diet and exercise training on inflammation and adipocyte lipolysis in obese postmenopausal women. J. Clin. Endocrinol. Metab. 89:1739–1746.
    1. You, T. J. , Wang X. W., Yang R. Z., Lyles M. F., Gong D. W., and Nicklas B. J.. 2012. Effect of exercise training intensity on adipose tissue hormone sensitive lipase gene expression in obese women under weight loss. J. Sport Health Sci. 1:184–190.

Source: PubMed

3
Prenumerera