Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Is Not Induced in Artificial Human Inflammation and Is Not Correlated with Inflammatory Response

Matthias Wolfgang Heinzl, Michael Resl, Carmen Klammer, Margot Egger, Benjamin Dieplinger, Martin Clodi, Matthias Wolfgang Heinzl, Michael Resl, Carmen Klammer, Margot Egger, Benjamin Dieplinger, Martin Clodi

Abstract

Lipoproteins, as well as proprotein convertase subtilisin/kexin type 9 (PCSK9), have been shown to play a key role in the innate immune response. However, knowledge about the role and kinetics of PCSK9 in human inflammation is currently insufficient. This study aimed to investigate the interaction between inflammation and lipid metabolism, including the possible role of PCSK9. A single-blinded, placebo-controlled cross-over study using the human endotoxin model was performed. Ten healthy men received lipopolysaccharide (LPS) or placebo on two different study days after overnight fasting. Lipoproteins as well as PCSK9 were measured repetitively over 48 h. PCSK9 plasma concentrations were not induced by LPS infusion, and no correlation between PCSK9 plasma concentrations and the degree of inflammation could be identified. The observed low-density lipoprotein (LDL) response to inflammation was more complex than anticipated, especially in the very early phase after the inflammatory stimulus. Baseline concentrations of LDL, as well as high-density lipoprotein (HDL), correlated negatively with inflammatory response. Our data suggest that the lipoprotein response to inflammation is independent of PCSK9. The proposed elevations of PCSK9 and suspected correlations between PCSK9 levels and inflammatory response are not supported by our data. (This study has been registered at ClinicalTrials.gov under registration no. NCT03392701.).

Keywords: LDL; LPS; PCSK9; human endotoxin model; inflammation; lipopolysaccharide; low-density lipoprotein; pathogen lipids; proprotein convertase subtilisin/kexin type 9.

Copyright © 2020 Heinzl et al.

Figures

FIG 1
FIG 1
Mean plasma concentrations of interleukin-6 (IL-6) and C-reactive protein (CRP). The difference between placebo and LPS administration was statistically significant for IL-6 (P = 0.018) as well as CRP (P < 0.001), as measured by RM-ANOVA. IL-6 values are given in picograms per milliliter on the lefthand side; the assay’s upper limit of normal is 15 pg/ml. CRP values are given in milligrams per deciliter on the righthand side; the assay’s upper limit of normal is 1.0 mg/dl.
FIG 2
FIG 2
RM-ANOVA for PCSK9. There was no statistically significant difference in PCSK9 plasma concentrations between placebo and LPS administration (P = 0.44 using the Greenhouse-Geisser correction). Time points are shown on the abscissa, and plasma concentrations of PCSK9 are shown on the ordinate (values given in nanograms per milliliter). Error bars depict 95% confidence intervals. The decrease of PCSK9 throughout the study day is due to fasting conditions and diurnal variation (26).
FIG 3
FIG 3
RM-ANOVA for LDL. The difference in LDL plasma concentrations between placebo and LPS administration was statistically significant (P < 0.001 using the Greenhouse-Geisser correction). Time points are shown on the abscissa, the ratio of LDL values to baseline is shown on the ordinate. Error bars depict 95% confidence intervals. Of note, there was a distinct peak in LDL levels 60 min after LPS administration. This relative elevation of LDL levels following LPS infusion was not statistically significant after correction for baseline difference (P = 0.065 using the Greenhouse-Geisser correction).
FIG 4
FIG 4
Scatter plot depicting the negative correlation between LDL levels at baseline and IL-6 levels 24 h after the administration of LPS. This negative correlation was statistically significant (Pearson coefficient of correlation = −0.699; P = 0.024).

References

    1. Giovannini I, Boldrini G, Chiarla C, Giuliante F, Vellone M, Nuzzo G. 1999. Pathophysiologic correlates of hypocholesterolemia in critically ill surgical patients. Intensive Care Med 25:748–751. doi:10.1007/s001340050940.
    1. Dunham CM, Fealk MH, Sever WE III. 2003. Following severe injury, hypocholesterolemia improves with convalescence but persists with organ failure or onset of infection. Crit Care 7:R145–R153. doi:10.1186/cc2382.
    1. Biller K, Fae P, Germann R, Drexel H, Walli AK, Fraunberger P. 2014. Cholesterol rather than procalcitonin or C-reactive protein predicts mortality in patients with infection. Shock 42:129–132. doi:10.1097/SHK.0000000000000187.
    1. Lee SH, Lee JY, Hong TH, Kim BO, Lee YJ, Lee JG. 2018. Severe persistent hypocholesterolemia after emergency gastrointestinal surgery predicts in-hospital mortality in critically ill patients with diffuse peritonitis. PLoS One 13:e0200187. doi:10.1371/journal.pone.0200187.
    1. Chiarla C, Giovannini I, Giuliante F, Zadak Z, Vellone M, Ardito F, Clemente G, Murazio M, Nuzzo G. 2010. Severe hypocholesterolemia in surgical patients, sepsis, and critical illness. J Crit Care 25:361.e7–361.e12. doi:10.1016/j.jcrc.2009.08.006.
    1. Fraunberger P, Schaefer S, Werdan K, Walli AK, Seidel D. 1999. Reduction of circulating cholesterol and apolipoprotein levels during sepsis. Clin Chem Lab Med 37:357–362. doi:10.1515/CCLM.1999.059.
    1. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. 2004. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 45:1169–1196. doi:10.1194/jlr.R300019-JLR200.
    1. Walley KR, Francis GA, Opal SM, Stein EA, Russell JA, Boyd JH. 2015. The central role of proprotein convertase subtilisin/kexin type 9 in septic pathogen lipid transport and clearance. Am J Respir Crit Care Med 192:1275–1286. doi:10.1164/rccm.201505-0876CI.
    1. Levels JH, Marquart JA, Abraham PR, van den Ende AE, Molhuizen HO, van Deventer SJ, Meijers JC. 2005. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect Immun 73:2321–2326. doi:10.1128/IAI.73.4.2321-2326.2005.
    1. Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, Christie JD, Nakada TA, Fjell CD, Thair SA, Cirstea MS, Boyd JH. 2014. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med 6:258ra143. doi:10.1126/scitranslmed.3008782.
    1. Read TE, Grunfeld C, Kumwenda Z, Calhoun MC, Kane JP, Feingold KR, Rapp JH. 1995. Triglyceride-rich lipoproteins improve survival when given after endotoxin in rats. Surgery 117:62–67. doi:10.1016/s0039-6060(05)80231-4.
    1. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR. 2017. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722. doi:10.1056/NEJMoa1615664.
    1. Costet P, Krempf M, Cariou B. 2008. PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem Sci 33:426–434. doi:10.1016/j.tibs.2008.06.005.
    1. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. 2008. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 374:341–344. doi:10.1016/j.bbrc.2008.07.023.
    1. Boyd JH, Fjell CD, Russell JA, Sirounis D, Cirstea MS, Walley KR. 2016. Increased plasma PCSK9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis. J Innate Immun 8:211–220. doi:10.1159/000442976.
    1. Le Bras M, Roquilly A, Deckert V, Langhi C, Feuillet F, Sebille V, Mahe PJ, Bach K, Masson D, Lagrost L, Costet P, Asehnoune K, Cariou B. 2013. Plasma PCSK9 is a late biomarker of severity in patients with severe trauma injury. J Clin Endocrinol Metab 98:E732–E736. doi:10.1210/jc.2012-4236.
    1. Fong YM, Marano MA, Moldawer LL, Wei H, Calvano SE, Kenney JS, Allison AC, Cerami A, Shires GT, Lowry SF. 1990. The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Investig 85:1896–1904. doi:10.1172/JCI114651.
    1. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, Cerami A, Wolff SM, Wilmore DW. 1988. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486. doi:10.1056/NEJM198806093182301.
    1. Vila G, Riedl M, Resl M, van der Lely AJ, Hofland LJ, Clodi M, Luger A. 2009. Systemic administration of oxytocin reduces basal and lipopolysaccharide-induced ghrelin levels in healthy men. J Endocrinol 203:175–179. doi:10.1677/JOE-09-0227.
    1. Vila G, Resl M, Stelzeneder D, Struck J, Maier C, Riedl M, Hulsmann M, Pacher R, Luger A, Clodi M. 2008. Plasma NT-proBNP increases in response to LPS administration in healthy men. J Appl Physiol 105:1741–1745. doi:10.1152/japplphysiol.90442.2008.
    1. Clodi M, Vila G, Geyeregger R, Riedl M, Stulnig TM, Struck J, Luger TA, Luger A. 2008. Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol Endocrinol Metab 295:E686–E691. doi:10.1152/ajpendo.90263.2008.
    1. Vila G, Maier C, Riedl M, Nowotny P, Ludvik B, Luger A, Clodi M. 2007. Bacterial endotoxin induces biphasic changes in plasma ghrelin in healthy humans. J Clin Endocrinol Metab 92:3930–3934. doi:10.1210/jc.2007-1194.
    1. Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Møller K. 2008. Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15:1697–1705. doi:10.2174/092986708784872393.
    1. Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, Tabita-Martinez J, Sellers KF, Rickels MR, Reilly MP. 2010. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 59:172–181. doi:10.2337/db09-0367.
    1. Hudgins LC, Parker TS, Levine DM, Gordon BR, Saal SD, Jiang XC, Seidman CE, Tremaroli JD, Lai J, Rubin AL. 2003. A single intravenous dose of endotoxin rapidly alters serum lipoproteins and lipid transfer proteins in normal volunteers. J Lipid Res 44:1489–1498. doi:10.1194/jlr.M200440-JLR200.
    1. Persson L, Cao G, Stahle L, Sjoberg BG, Troutt JS, Konrad RJ, Galman C, Wallen H, Eriksson M, Hafstrom I, Lind S, Dahlin M, Amark P, Angelin B, Rudling M. 2010. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol 30:2666–2672. doi:10.1161/ATVBAHA.110.214130.
    1. Genga KR, Lo C, Cirstea MS, Leitao Filho FS, Walley KR, Russell JA, Linder A, Francis GA, Boyd JH. 2018. Impact of PCSK9 loss-of-function genotype on 1-year mortality and recurrent infection in sepsis survivors. EBioMedicine 38:257–264. doi:10.1016/j.ebiom.2018.11.032.
    1. Birjmohun RS, van Leuven SI, Levels JH, van ‘T Veer C, Kuivenhoven JA, Meijers JC, Levi M, Kastelein JJ, van der Poll T, Stroes ES. 2007. High-density lipoprotein attenuates inflammation and coagulation response on endotoxin challenge in humans. Arterioscler Thromb Vasc Biol 27:1153–1158. doi:10.1161/ATVBAHA.106.136325.
    1. Liang Y, Vetrano DL, Qiu C. 2017. Serum total cholesterol and risk of cardiovascular and non-cardiovascular mortality in old age: a population-based study. BMC Geriatr 17:294. doi:10.1186/s12877-017-0685-z.
    1. Ravnskov U, Diamond DM, Hama R, Hamazaki T, Hammarskjold B, Hynes N, Kendrick M, Langsjoen PH, Malhotra A, Mascitelli L, McCully KS, Ogushi Y, Okuyama H, Rosch PJ, Schersten T, Sultan S, Sundberg R. 2016. Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review. BMJ Open 6:e010401. doi:10.1136/bmjopen-2015-010401.

Source: PubMed

3
Prenumerera