Comparative Study of Strategies for Management of Duchenne Myopathy (DM)

August 15, 2018 updated by: Nancy Alaa, Assiut University

A Comparative Study of Strategies for Management of Duchenne Myopathy in Assiut University Children Hospital

  1. Comparing different lines of treatment of Duchenne Myopathy (DM) and assessment of new lines of treatment (mesenchymal stem cell, phosphodiesterase inhibitors) in reducing the impact of disability in the patients with Duchenne Myopathy and slowing the progression of cardiomyopathy
  2. Upsetting and implementation of the best treatment plan for those children with Duchenne myopathy which is suitable for the available resources in Assiut University Children Hospital

Study Overview

Detailed Description

Duchenne muscular dystrophy(DMD) is the most commonly inherited pediatric muscular disorder. It is an X-linked genetic progressive and degenerative myopathy characterized by progressive weakness, which can lead to loss of motor functions in puberty as well as cardiac,respiratory involvement and premature death. The disease is one of a group of myopathies that differ depending on the degree of severity and the affected muscle types. It occurs at a rate of approximately 1:3500 male births and arises due to spontaneous mutations in the Dystrophin gene (locus Xp21.2); 65% of causative mutations are intragenic deletions, 6-10% are intragenic duplications and 30-35% are point mutations (along with other sequence variations). The disease is caused by a deficiency of Dystrophin or the synthesis of functionally impotent Dystrophin, a critical protein component of the Dystrophin glycoprotein complex acting as a link between the cytoskeleton and the extracellular matrix in skeletal and cardiac muscles. A consequence of Dystrophin glycoprotein complex inefficiency is muscle fragility, contraction-induced damage, necrosis and inflammation.

Glucocorticoid can prolong ambulation by 2 to 3 years, reduce scoliosis, and temper pulmonary and cardiac decline in the second decade of life. However, glucocorticoids causes well-known side effects, which are intolerable in more than 25% of patients. Thus, a disease-specific treatment is a major unmet need. Investigators have proposed various possibilities for the beneficial effects of corticosteroid based mainly on observations in mouse models of muscular dystrophy and on a limited number of studies in patients.

These possibilities include

  1. Reducing cytotoxic T lymphocytes
  2. Increasing Laminin expression and myogenic repair
  3. Retarding muscle apoptosis and cellular infiltration
  4. Enhancing Dystrophin expression
  5. Affecting neuromuscular transmission

Some patients with Duchenne Myopathy treated early with steroids appear to have an improved long-term prognosis in muscle, myocardial outcome, and can help keep patients ambulatory for more years than expected without treatment. One protocol gives prednisone (0.75 mg/kg/day) for the 1st 10 days of each month to avoid chronic complications. Deflazacort, administered as 0.9 mg/kg/day, may be more effective than prednisone. The American Academy of Neurology and the Child Neurology Society recommend administering corticosteroids during the ambulatory stage of the disease.Published recommendations suggest starting therapy between 2 and 5 years of age in boys whose strength has plateaued or is declining, but earlier treatment may be more beneficial.

Skeletal muscle has a great capacity to regenerate following muscle wasting caused by trauma or disease.This regenerative potential is attributed primarily to skeletal-muscle resident stem cells called satellite cells. In Duchenne Myopathy, satellite cells are exhausted following many rounds of muscle degeneration and regeneration. Hence, satellite cells and their progeny (myoblasts) have been considered as a promising candidate for cell replacement therapy for DMD and other types of muscle disease. Small quantities of adult stem cells exist in most tissues throughout the body where they remain quiescent for long periods of time prior to being activated in response to disease or tissue injury. Adult stem cells can be isolated from cells of the hematopoietic, neural, dermal, muscle and hepatic systems. Adult stem cells give rise to cell types of the tissue from which they originated, but according to scientific reports, they can differentiate into lineages other than their tissue of origin, e.g. transplanted bone marrow or enriched hematopoietic stem cells (HSCs) were reported to give rise to cells of the mesoderm, endoderm and ectoderm.

Two main types of stem cells usually derived from adult bone marrow are HSCs and mesenchymal stem cells (MSC). They can sometimes be obtained from fat, skin, periosteum, synovial membrane and muscle as well. MSCs are multipotent and capable of differentiating into several connective tissue types including osteocytes, chondrocytes, adipocytes, tenocytes and myoblasts. They can also impose an additional anti-inflammatory and paracrine effect on differentiation and tissue regeneration via cytokine pathways and have anti-apoptotic features. These genetically determined pluripotent cells may be easily isolated from bone marrow because they have membrane proteins (marker called cluster of differentiation (CD34 +) and specific marker STRO-I). Compared with pluripotent embryonic stem cells or induced pluripotent stem cells, mesenchymal stem cell have a greater biosafety profile and lower risk of tumorigenicity, and perhaps that is why numerous -mesenchymal stem cell based therapies have made it to the clinical trial stage. Stem cell based therapies for the treatment of Duchenne Myopathy can proceed via two strategies.

The first is autologous stem cell transfer involving cells from a patient with Duchenne Myopathy that are genetically altered in vitro to restore dystrophin expression and are subsequently re-implanted. The second is allogenic stem cell transfer, containing cells from an individual with functional dystrophin, which are transplanted into a dystrophic patient.

Intramuscular route of administration can be considered most appropriate as muscular dystrophy is primarily a muscle disease. The cells can be injected in several points in the muscle alternatively they can be injected in the motor point of the muscle. A motor point is the point at which the motor branch of the innervating nerve enters the muscle. It is the point with the highest concentration of motor endplates and myoneural synapses. Due to high numbers of neuromuscular junctions at this point, a muscle contraction can be easily elicited using minimal electric stimulus. Motor points can therefore be identified as superficial points directly over the points on the muscles with help of external electrical stimulation. Limitation of this method is that only superficial muscles can be stimulated using this method.

In an open study, Sharma and colleagues demonstrated the efficacy of autologous bone marrow mononuclear transplantation by intramuscularly to patients with Duchenne Myopathy, Becker muscular dystrophy and limb girdle muscular dystrophy. However, they did not provide the molecular diagnosis of these dystrophies. No significant adverse events were noted. An increase in trunk muscle strength was seen in 53% of the cases, 48% showed an increase in upper limb strength, 59% showed an increase in lower limb strength and approximately 10% showed improved gait. Eighty seven percent of 150 patients had functional improvement upon physical examination and electromyogram studies after 12 month.

Study Type

Interventional

Enrollment (Anticipated)

45

Phase

  • Phase 4

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

3 years to 13 years (Child)

Accepts Healthy Volunteers

No

Genders Eligible for Study

Male

Description

Inclusion Criteria:

  • Diagnosis of DMD confirmed by electromyogram (EMG) , Creatine phosphokinase (CPK) level and/ or DNA analysis or muscle biopsy.
  • Male patients
  • Age 5-15y.
  • Ambulatory (loss of ambulation was only seen in those with baseline 6 Minute Walk Distance {6MWD} <325 meters.)
  • No clinical evidence of heart failure.

Exclusion Criteria:

  • Female patients
  • Any injury which may impact functional testing, e.g. upper or lower limb fracture.
  • hypertension, diabetes,
  • Wheelchair bound.
  • Cardiac rhythm disorder, specifically: rhythm other than sinus, supraventricular tachycardia (SVT), atrial fibrillation, ventricular tachycardia.or heart failure (left ventricle ejection fraction {LVEF < 50%}.
  • Continuous ventilatory support.
  • Liver disease (acute, chronic liver disease)
  • Renal impairment

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: Steroid
prednisolone 20 mg tablet by mouth taken once daily for 10 days each month for 2 years
tablet 20 mg
Other Names:
  • Prednisolone 20 mg
Active Comparator: Phosphodiestrase inhibitors
sildenafil 25 mg tablet by mouth once daily for 2 years
tablet 25mg
Other Names:
  • sildenafil
  • viagra
Experimental: Mesenchymal stem cell transplantation
The cells can be injected intramuscular in several points in the muscle alternatively they can be injected in the motor point of the muscle. A motor point is the point at which the motor branch of the innervating nerve enters the muscle). This injection is repeated every 6 month up to 2 years.
stem cell transplantation intramuscular

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
6 Minute Walk Distance (6MWD)
Time Frame: 6 month
It is used as measure of motor strength in patients with Duchenne Myopathy. A baseline 6MWD of <350 meters was associated with greater functional decline, and loss of ambulation was only seen in those with baseline 6MWD <325 meters
6 month

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Director: Emad EL Daly, Professor, Assiut University

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Anticipated)

September 1, 2018

Primary Completion (Anticipated)

September 1, 2021

Study Completion (Anticipated)

November 1, 2021

Study Registration Dates

First Submitted

August 12, 2018

First Submitted That Met QC Criteria

August 15, 2018

First Posted (Actual)

August 16, 2018

Study Record Updates

Last Update Posted (Actual)

August 16, 2018

Last Update Submitted That Met QC Criteria

August 15, 2018

Last Verified

August 1, 2018

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Myopathy

Clinical Trials on Prednisolone (Steroids)

3
Subscribe