Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes' Health

Cristina Nocella, Vittoria Cammisotto, Fabio Pigozzi, Paolo Borrione, Chiara Fossati, Alessandra D'Amico, Roberto Cangemi, Mariangela Peruzzi, Giuliana Gobbi, Evaristo Ettorre, Giacomo Frati, Elena Cavarretta, Roberto Carnevale, SMiLe Group, Beatrice Benazzi, Chiara Bologna, Valeria Cipolla, Chiara Clerici, Leonardo Marini, Andrea Missimei, Giovanni Ormesi, Niccolò Pannozzo, Leonardo Rasile, Sara Ruci, Greta Venturini, Fabio Zara, Cristina Nocella, Vittoria Cammisotto, Fabio Pigozzi, Paolo Borrione, Chiara Fossati, Alessandra D'Amico, Roberto Cangemi, Mariangela Peruzzi, Giuliana Gobbi, Evaristo Ettorre, Giacomo Frati, Elena Cavarretta, Roberto Carnevale, SMiLe Group, Beatrice Benazzi, Chiara Bologna, Valeria Cipolla, Chiara Clerici, Leonardo Marini, Andrea Missimei, Giovanni Ormesi, Niccolò Pannozzo, Leonardo Rasile, Sara Ruci, Greta Venturini, Fabio Zara

Abstract

The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals' lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant-antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.

Keywords: antioxidant; athletes; muscle damage; neurodegeneration; oxidative stress.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Schematic representation of the redox balance in three classes of athletes: amateur, elite, and master. High intensity exercise causes a redox imbalance that leads to different types of injuries, muscle damage, and development of neurodegenerative diseases. Furthermore, supplementation with antioxidants could restore the redox balance and reduce tissue damage mediated by oxidative stress in elite athletes.

References

    1. Halliwell B. Free Radicals and Other Reactive Species in Disease, Encyclopedia of Life Sciences. John Wiley & Sons, Ltd.; Chichester, UK: 2005.
    1. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. [(accessed on 15 May 2019)];Oxidative Med. Cell. Longev. 2016 2016:1245049. doi: 10.1155/2016/1245049. Available online: .
    1. Thannickal V.J., Fanburg B.L. Reactive oxygen species in cell signaling. [(accessed on 15 May 2019)];Am. J. Physiol. Cell. Mol. Physiol. 2000 279:L1005–L1028. doi: 10.1152/ajplung.2000.279.6.L1005. Available online: .
    1. Zeeshan H.M.A., Lee G.H., Kim H.-R., Chae H.-J. Endoplasmic Reticulum Stress and Associated ROS. [(accessed on 15 May 2019)];Int. J. Mol. Sci. 2016 17:327. doi: 10.3390/ijms17030327. Available online: .
    1. Abdal Dayem A., Hossain M.K., Lee S.B., Kim K., Saha S.K., Yang G.-M., Choi H.Y., Cho S.-G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. [(accessed on 15 May 2019)];Int. J. Mol. Sci. 2017 18:120. doi: 10.3390/ijms18010120. Available online: .
    1. Violi F., Loffredo L., Carnevale R., Pignatelli P., Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. [(accessed on 15 May 2019)];Antioxid. Redox Signal. 2017 27:1083–1124. doi: 10.1089/ars.2016.6963. Available online: .
    1. Brown D.I., Griendling K.K. Nox proteins in signal transduction. [(accessed on 15 May 2019)];Free Radic. Biol. Med. 2009 47:1239–1253. doi: 10.1016/j.freeradbiomed.2009.07.023. Available online: .
    1. Bae Y.S., Oh H., Rhee S.G., Do Yoo Y. Regulation of reactive oxygen species generation in cell signaling. [(accessed on 15 May 2019)];Mol. Cells. 2011 32:491–509. doi: 10.1007/s10059-011-0276-3. Available online: .
    1. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. [(accessed on 15 May 2019)];Oxidative Med. Cell. Longev. 2016 2016:4350965. doi: 10.1155/2016/4350965. Available online: .
    1. Phaniendra A., Jestadi D.B., Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. [(accessed on 15 May 2019)];Indian J. Clin. Biochem. 2015 30:11–26. doi: 10.1007/s12291-014-0446-0. Available online: .
    1. Aguilar T.A.F., Navarro B.C.H., Pérez J.A.M. A Master Regulator of Oxidative Stress—The Transcription Factor Nrf2. IntechOpen; London, UK: 2016. [(accessed on 15 May 2019)]. Endogenous Antioxidants: A Review of their Role in Oxidative Stress. Available online: .
    1. Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. [(accessed on 15 May 2019)];Pharmacogn. Rev. 2010 4:118–126. doi: 10.4103/0973-7847.70902. Available online: .
    1. Carlsen M.H., Halvorsen B.L., Holte K., Bøhn S.K., Dragland S., Sampson L., Willey C., Senoo H., Umezono Y., Sanada C., et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010;9:3. doi: 10.1186/1475-2891-9-3.
    1. Zujko M., Witkowska A., Waśkiewicz A., Sygnowska E. Estimation of dietary intake and patterns of polyphenol consumption in Polish adult population. [(accessed on 15 May 2019)];Adv. Med. Sci. 2012 57:375–384. doi: 10.2478/v10039-012-0026-6. Available online: .
    1. Wilson D., Nash P., Buttar H., Griffiths K., Singh R., De Meester F., Horiuchi R., Takahashi T. The Role of Food Antioxidants, Benefits of Functional Foods, and Influence of Feeding Habits on the Health of the Older Person: An Overview. [(accessed on 15 May 2019)];Antioxidants. 2017 6:81. Available online: .
    1. Carnevale R., Loffredo L., Pignatelli P., Nocella C., Bartimoccia S., Di Santo S., Martino F., Catasca E., Perri L., Violi F. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. [(accessed on 15 May 2019)];J. Thromb. Haemost. 2012 10:125–132. doi: 10.1111/j.1538-7836.2011.04558.x. Available online: .
    1. Aboul-Enein H.Y., Kruk I., Kładna A., Lichszteld K., Michalska T. Scavenging effects of phenolic compounds on reactive oxygen species. [(accessed on 15 May 2019)];Biopolymers. 2007 86:222–230. doi: 10.1002/bip.20725. Available online: .
    1. Li Y., Cao Z., Zhu H. Upregulation of endogenous antioxidants and phase 2 enzymes by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads to cytoprotection against oxidative and electrophilic stress. [(accessed on 15 May 2019)];Pharmacol. Res. 2006 53:6–15. doi: 10.1016/j.phrs.2005.08.002. Available online: .
    1. Nocella C., Cammisotto V., Fianchini L., D’Amico A., Novo M., Castellani V., Stefanini L., Violi F., Carnevale R. Extra Virgin Olive Oil and Cardiovascular Diseases: Benefits for Human Health. [(accessed on 15 May 2019)];Endocr. Metab. Immune Disord. Drug Targets. 2017 18:4–13. doi: 10.2174/1871530317666171114121533. Available online: .
    1. Khansari N., Shakiba Y., Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. [(accessed on 15 May 2019)];Recent Pat. Inflamm. Allergy Drug Discov. 2009 3:73–80. doi: 10.2174/187221309787158371. Available online: .
    1. Gracia K.C., Llanas-Cornejo D., Husi H. CVD and Oxidative Stress. [(accessed on 15 May 2019)];J. Clin. Med. 2017 6:22. Available online: .
    1. Uttara B., Singh A.V., Zamboni P., Mahajan R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. [(accessed on 15 May 2019)];Curr. Neuropharmacol. 2009 7:65–74. doi: 10.2174/157015909787602823. Available online: .
    1. Valko M., Izakovic M., Mazur M., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. [(accessed on 15 May 2019)];Mol. Cell. Biochem. 2004 266:37–56. doi: 10.1023/B:MCBI.0000049134.69131.89. Available online: .
    1. Nowak W.N., Deng J., Ruan X.Z., Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017;37:e41–e52. doi: 10.1161/ATVBAHA.117.309228.
    1. Pan X., Zhu Y., Lin N., Zhang J., Ye Q., Huang H., Chen X. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: Implications for Alzheimer’s disease. [(accessed on 15 May 2019)];Mol. Neurodegener. 2011 6:45. doi: 10.1186/1750-1326-6-45. Available online: .
    1. Sevcsik E., Trexler A.J., Dunn J.M., Rhoades E. Allostery in a disordered protein: Oxidative modifications to α-synuclein act distally to regulate membrane binding. [(accessed on 15 May 2019)];J. Am. Chem. Soc. 2011 133:7152–7158. doi: 10.1021/ja2009554. Available online: .
    1. Zhao W., Varghese M., Yemul S., Pan Y., Cheng A., Marano P., Hassan S., Vempati P., Chen F., Qian X., et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol. Neurodegener. 2011;6:51. doi: 10.1186/1750-1326-6-51.
    1. Witherick J., Wilkins A., Scolding N., Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. [(accessed on 15 May 2019)];Autoimmune Dis. 2010 2011:164608. doi: 10.4061/2011/164608. Available online: .
    1. Islam M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017;39:73–82. doi: 10.1080/01616412.2016.1251711.
    1. Carnevale R., Bartimoccia S., Nocella C., Di Santo S., Loffredo L., Illuminati G., Lombardi E., Boz V., Del Ben M., De Marco L., et al. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. [(accessed on 15 May 2019)];Atherosclerosis. 2014 237:108–116. doi: 10.1016/j.atherosclerosis.2014.08.041. Available online: .
    1. Abruzzo P., Esposito F., Marchionni C., di Tullio S., Belia S., Fulle S., Veicsteinas A., Marini M. Moderate Exercise Training Induces ROS-Related Adaptations to Skeletal Muscles. [(accessed on 15 May 2019)];Int. J. Sports Med. 2013 34:676–687. doi: 10.1055/s-0032-1323782. Available online: .
    1. Jornayvaz F.R., Shulman G.I. Regulation of mitochondrial biogenesis. [(accessed on 15 May 2019)];Essays Biochem. 2010 47:69–84. doi: 10.1042/bse0470069. Available online: .
    1. Samjoo I.A., Safdar A., Hamadeh M.J., Raha S., Tarnopolsky M.A. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. [(accessed on 15 May 2019)];Nutr. Diabetes. 2013 3:e88. doi: 10.1038/nutd.2013.30. Available online: .
    1. Lorenz D.S., Reiman M.P., Lehecka B.J., Naylor A. What performance characteristics determine elite versus nonelite athletes in the same sport? [(accessed on 15 May 2019)];Sports Health. 2013 5:542–547. doi: 10.1177/1941738113479763. Available online: .
    1. Cavarretta E., Peruzzi M., Frati G., Sciarretta S. When enough is more than enough: The hidden side of the cardiac effects of intense physical exercise. [(accessed on 15 May 2019)];Int. J. Cardiol. 2018 258:224–225. doi: 10.1016/j.ijcard.2018.01.068. Available online: .
    1. Radak Z., Ishihara K., Tekus E., Varga C., Posa A., Balogh L., Boldogh I., Koltai E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. [(accessed on 15 May 2019)];Redox Biol. 2017 12:285–290. doi: 10.1016/j.redox.2017.02.015. Available online: .
    1. Falone S., Mirabilio A., Pennelli A., Cacchio M., Di Baldassarre A., Gallina S., Passerini A., Amicarelli F. Differential Impact of Acute Bout of Exercise on Redox-and Oxidative Damage-Related Profiles Between Untrained Subjects and Amateur Runners. [(accessed on 15 May 2019)];Physiol. Res. 2010 59:953–961. Available online: .
    1. Seifi-Skishahr F., Damirchi A., Farjaminezhad M., Babaei P. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise. [(accessed on 15 May 2019)];Biochem. Res. Int. 2016 2016:3757623. doi: 10.1155/2016/3757623. Available online:
    1. Bloomer R.J., Goldfarb A.H., Wideman L., McKenzie M.J., Consitt L.A. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. [(accessed on 15 May 2019)];J. Strength Cond. Res. 2005 19:276–285. Available online: .
    1. Arsic A., Vucic V., Glibetic M., Popovic T., Debeljak-Martacic J., Cubrilo D., Ahmetovic Z., Peric D., Borozan S., Djuric D., et al. Redox balance in elite female athletes: Differences based on sport types. [(accessed on 15 May 2019)];J. Sports Med. Phys. Fit. 2019 56:1–8. Available online: .
    1. Bloomer R., Davis P., Consitt L., Wideman L. Plasma Protein Carbonyl Response to Increasing Exercise Duration in Aerobically Trained Men and Women. Int. J. Sports Med. 2007;28:21–25. doi: 10.1055/s-2006-924140.
    1. Goto C., Nishioka K., Umemura T., Jitsuiki D., Sakagutchi A., Kawamura M., Chayama K., Yoshizumi M., Higashi Y. Acute Moderate-Intensity Exercise Induces Vasodilation Through an Increase in Nitric Oxide Bioavailiability in Humans. Am. J. Hypertens. 2007;20:825–830. doi: 10.1016/j.amjhyper.2007.02.014.
    1. Goto C., Higashi Y., Kimura M., Noma K., Hara K., Nakagawa K., Kawamura M., Chayama K., Yoshizumi M., Nara I. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: Role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108:530–535. doi: 10.1161/01.CIR.0000080893.55729.28.
    1. Sacheck J.M., Cannon J.G., Hamada K., Vannier E., Blumberg J.B., Roubenoff R. Age-related loss of associations between acute exercise-induced IL-6 and oxidative stress. Am. J. Physiol. Endocrinol. Metab. 2006;291:E340–E349. doi: 10.1152/ajpendo.00052.2005.
    1. Bloomer R.J., Fry A.C., Falvo M.J., Moore C.A. Protein carbonyls are acutely elevated following single set anaerobic exercise in resistance trained men. [(accessed on 15 May 2019)];J. Sci. Med. Sport. 2007 10:411–417. doi: 10.1016/j.jsams.2006.07.014. Available online: .
    1. McAnulty S.R., McAnulty L.S., Nieman D.C., Morrow J.D., Utter A.C., Dumke C.L. Effect of resistance exercise and carbohydrate ingestion on oxidative stress. Free Radic. Res. 2005;39:1219–1224. doi: 10.1080/10725760500317536.
    1. Watson T.A., Callister R., Taylor R.D., Sibbritt D.W., MacDonald-Wicks L.K., Garg M.L. Antioxidant restriction and oxidative stress in short-duration exhaustive exercise. [(accessed on 15 May 2019)];Med. Sci. Sports Exerc. 2005 37:63–71. doi: 10.1249/01.MSS.0000150016.46508.A1. Available online: .
    1. Becatti M., Mannucci A., Barygina V., Mascherini G., Emmi G., Silvestri E., Wright D., Taddei N., Galanti G., Fiorillo C. Redox status alterations during the competitive season in élite soccer players: Focus on peripheral leukocyte-derived ROS. [(accessed on 15 May 2019)];Intern. Emerg. Med. 2017 12:777–788. doi: 10.1007/s11739-017-1653-5. Available online: .
    1. Cavarretta E., Peruzzi M., Del Vescovo R., Di Pilla F., Gobbi G., Serdoz A., Ferrara R., Schirone L., Sciarretta S., Nocella C., et al. Dark Chocolate Intake Positively Modulates Redox Status and Markers of Muscular Damage in Elite Football Athletes: A Randomized Controlled Study. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2018 2018:4061901. doi: 10.1155/2018/4061901. Available online: .
    1. Kozakiewicz M., Rowiński R., Kornatowski M., Dąbrowski A., Kędziora-Kornatowska K., Strachecka A. Relation of Moderate Physical Activity to Blood Markers of Oxidative Stress and Antioxidant Defense in the Elderly. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2019 2019:5123628. Available online: .
    1. Barranco-Ruiz Y., Aragón-Vela J., Casals C., Martínez-Amat A., Villa-González E., Huertas J.R. Lifelong amateur endurance practice attenuates oxidative stress and prevents muscle wasting in senior adults. [(accessed on 15 May 2019)];J. Sports Med. Phys. Fit. 2017 57:670–677. Available online: .
    1. Mrakic-Sposta S., Gussoni M., Porcelli S., Pugliese L., Pavei G., Bellistri G., Montorsi M., Tacchini P., Vezzoli A. Training Effects on ROS Production Determined by Electron Paramagnetic Resonance in Master Swimmers. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2015 2015:804794. doi: 10.1155/2015/804794. Available online: .
    1. Vezzoli A., Pugliese L., Marzorati M., Serpiello F.R., La Torre A., Porcelli S. Time-Course Changes of Oxidative Stress Response to High-Intensity Discontinuous Training versus Moderate-Intensity Continuous Training in Masters Runners. [(accessed on 15 May 2019)];PLoS ONE. 2014 9:e87506. doi: 10.1371/journal.pone.0087506. Available online: .
    1. Sousa C.V., Aguiar S.S., Santos P.A., Barbosa L.P., Knechtle B., Nikolaidis P.T., Deus L.A., Sales M.M., Rosa E.C., Rosa T.S., et al. Telomere length and redox balance in master endurance runners: The role of nitric oxide. [(accessed on 15 May 2019)];Exp. Gerontol. 2019 117:113–118. doi: 10.1016/j.exger.2018.11.018. Available online: .
    1. Marzatico F., Pansarasa O., Bertorelli L., Somenzini L., Della Valle G. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. [(accessed on 15 May 2019)];J. Sports Med. Phys. Fit. 1997 37:235–239. Available online: .
    1. Dillard C.J., Litov R.E., Savin W.M., Dumelin E.E., Tappel A.L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. [(accessed on 15 May 2019)];J. Appl. Physiol. 1978 45:927–932. doi: 10.1152/jappl.1978.45.6.927. Available online: .
    1. Brown S.J., Child R.B., Day S.H., Donnelly A.E. Indices of skeletal muscle damage and connective tissue breakdown following eccentric muscle contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1997;75:369–374. doi: 10.1007/s004210050174.
    1. Kjaer M., Magnusson P., Krogsgaard M., Boysen Møller J., Olesen J., Heinemeier K., Hansen M., Haraldsson B., Koskinen S., Esmarck B., et al. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. [(accessed on 15 May 2019)];J. Anat. 2006 208:445–450. doi: 10.1111/j.1469-7580.2006.00549.x. Available online: .
    1. Fridén J., Lieber R.L. Structural and mechanical basis of exercise-induced muscle injury. [(accessed on 15 May 2019)];Med. Sci. Sports Exerc. 1992 24:521–530. doi: 10.1249/00005768-199205000-00005. Available online: .
    1. McGinley C., Shafat A., Donnelly A.E. Does Antioxidant Vitamin Supplementation Protect against Muscle Damage? [(accessed on 15 May 2019)];Sport Med. 2009 39:1011–1032. doi: 10.2165/11317890-000000000-00000. Available online: .
    1. Butterfield T.A. Eccentric Exercise In Vivo. [(accessed on 15 May 2019)];Exerc. Sport Sci. Rev. 2010 38:51–60. doi: 10.1097/JES.0b013e3181d496eb. Available online: .
    1. Smith M.A., Reid M.B. Redox modulation of contractile function in respiratory and limb skeletal muscle. [(accessed on 15 May 2019)];Respir. Physiol. Neurobiol. 2006 151:229–241. doi: 10.1016/j.resp.2005.12.011. Available online: .
    1. Radak Z., Taylor A.W., Ohno H., Goto S. Adaptation to exercise-induced oxidative stress: From muscle to brain. [(accessed on 15 May 2019)];Exerc. Immunol. Rev. 2001 7:90–107. Available online: .
    1. Reid M.B. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. [(accessed on 15 May 2019)];Free Radic. Biol. Med. 2008 44:169–179. doi: 10.1016/j.freeradbiomed.2007.03.002. Available online: .
    1. Akimoto A.K., Miranda-Vilela A.L., Alves P.C.Z., Pereira L.C., Lordelo G.S., Hiragi C., da Silva I.C.R., Grisolia C.K., Klautau-Guimarães M. Evaluation of gene polymorphisms in exercise-induced oxidative stress and damage. Free Radic. Res. 2010;44:322–331. doi: 10.3109/10715760903494176.
    1. Ahmetov I.I., Naumov V.A., Donnikov A.E., Maciejewska-Karłowska A., Kostryukova E.S., Larin A.K., Maykova E.V., Alexeev D.G., Fedotovskaya O.N., Generozov E.V., et al. SOD2 gene polymorphism and muscle damage markers in elite athletes. Free Radic. Res. 2014;48:948–955. doi: 10.3109/10715762.2014.928410.
    1. Skenderi K.P., Tsironi M., Lazaropoulou C., Anastasiou C.A., Matalas A.L., Kanavaki I., Thalmann M., Goussetis E., Papassotiriou I., Chrousos G.P. Changes in free radical generation and antioxidant capacity during ultramarathon foot race. Eur. J. Clin. Investig. 2008;38:159–165. doi: 10.1111/j.1365-2362.2007.01917.x.
    1. Perrea A., Vlachos I.S., Korou L.M., Doulamis I.P., Exarhopoulou K., Kypraios G., Kalofoutis A., Perrea D.N. Comparison of the short-term oxidative stress response in National League basketball and soccer adolescent athletes. Angiology. 2014;65:624–629. doi: 10.1177/0003319713497991.
    1. Myburgh K.H. Polyphenol supplementation: Benefits for exercise performance or oxidative stress? [(accessed on 15 May 2019)];Sports Med. 2014 44:S57–S70. doi: 10.1007/s40279-014-0151-4. Available online: .
    1. Mello R., Gomes D., Paz G.A., Nasser I., Miranda H., Salerno V.P. Oxidative stress and antioxidant biomarker responses after a moderate-intensity soccer training session. Res. Sport Med. 2017;25:322–332. doi: 10.1080/15438627.2017.1345738.
    1. Spanidis Y., Goutzourelas N., Stagos D., Mpesios A., Priftis A., Bar-Or D., Spandidos D.A., Tsatsakis A.M., Leon G., Kouretas D. Variations in oxidative stress markers in elite basketball players at the beginning and end of a season. Exp. Ther. Med. 2016;11:147–153. doi: 10.3892/etm.2015.2843.
    1. Djordjevic D., Cubrilo D., Macura M., Barudzic N., Djuric D., Jakovljevic V. The influence of training status on oxidative stress in young male handball players. Mol. Cell. Biochem. 2011;351:251–259. doi: 10.1007/s11010-011-0732-6.
    1. Hadžović-Džuvo A., Valjevac A., Lepara O., Pjanić S., Hadžimuratović A., Mekić A. Oxidative stress status in elite athletes engaged in different sport disciplines. [(accessed on 15 May 2019)];Bosn. J. Basic Med. Sci. 2014 14:56–62. doi: 10.17305/bjbms.2014.2262. Available online: .
    1. Marin D.P., Bolin A.P., Campoio T.R., Guerra B.A., Otton R. Oxidative stress and antioxidant status response of handball athletes: Implications for sport training monitoring. [(accessed on 15 May 2019)];Int. Immunopharmacol. 2013 17:462–470. doi: 10.1016/j.intimp.2013.07.009. Available online: .
    1. Marin D.P., dos Santos R., Bolin A.P., Guerra B.A., Hatanaka E., Otton R. Cytokines and oxidative stress status following a handball game in elite male players. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2011 2011:804873. doi: 10.1155/2011/804873. Available online:
    1. León-López J., Calderón-Soto C., Pérez-Sánchez M., Feriche B., Iglesias X., Chaverri D., Rodríguez F.A. Oxidative stress in elite athletes training at moderate altitude and at sea level. [(accessed on 15 May 2019)];Eur. J. Sport Sci. 2018 18:832–841. doi: 10.1080/17461391.2018.1453550. Available online: .
    1. Vecchio M., Currò M., Trimarchi F., Naccari S., Caccamo D., Ientile R., Barreca D., Di Mauro D. The Oxidative Stress Response in Elite Water Polo Players: Effects of Genetic Background. [(accessed on 15 May 2019)];Biomed. Res. Int. 2017 2017:7019694. doi: 10.1155/2017/7019694. Available online:
    1. Dinarello C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. [(accessed on 15 May 2019)];Annu. Rev. Immunol. 2009 27:519–550. doi: 10.1146/annurev.immunol.021908.132612. Available online: .
    1. Santtila S., Savinainen K., Hurme M. Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. [(accessed on 15 May 2019)];Scand. J. Immunol. 1998 47:195–198. doi: 10.1046/j.1365-3083.1998.00300.x. Available online: .
    1. Hill M., Goldspink G. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. [(accessed on 15 May 2019)];J. Physiol. 2003 549:409–418. doi: 10.1113/jphysiol.2002.035832. Available online: .
    1. Dobrowolny G., Giacinti C., Pelosi L., Nicoletti C., Winn N., Barberi L., Molinaro M., Rosenthal N., Musarò A. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. [(accessed on 15 May 2019)];J. Cell Biol. 2005 168:193–199. doi: 10.1083/jcb.200407021. Available online: .
    1. Bedair H.S., Karthikeyan T., Quintero A., Li Y., Huard J. Angiotensin II Receptor Blockade Administered after Injury Improves Muscle Regeneration and Decreases Fibrosis in Normal Skeletal Muscle. Am. J. Sports Med. 2008;36:1548–1554. doi: 10.1177/0363546508315470.
    1. Al-Chalabi A., Leigh P.N. Trouble on the pitch: Are professional football players at increased risk of developing amyotrophic lateral sclerosis? Brain. 2005;128:451–453. doi: 10.1093/brain/awh426.
    1. Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2017 2017:2525967. doi: 10.1155/2017/2525967. Available online:
    1. Albers D.S., Flint Beal M. Advances in Dementia Research. Springer; Vienna, Austria: 2000. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease; pp. 133–154.
    1. Mitchell J.D. Amyotrophic lateral sclerosis: Toxins and environment. [(accessed on 15 May 2019)];Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000 1:235–250. doi: 10.1080/14660820050515061. Available online: .
    1. Armon C. An Evidence-Based Medicine Approach to the Evaluation of the Role of Exogenous Risk Factors in Sporadic Amyotrophic Lateral Sclerosis. [(accessed on 15 May 2019)];Neuroepidemiology. 2003 22:217–228. doi: 10.1159/000070562. Available online: .
    1. Gotkine M., Friedlander Y., Hochner H. Triathletes are over-represented in a population of patients with ALS. [(accessed on 15 May 2019)];Amyotroph. Lateral Scler. Front. Degener. 2014 15:534–536. doi: 10.3109/21678421.2014.932383. Available online: .
    1. Pupillo E., Messina P., Logroscino G., Zoccolella S., Chiò A., Calvo A., Corbo M., Lunetta C., Micheli A., Millul A., et al. Trauma and amyotrophic lateral sclerosis: A case-control study from a population-based registry. [(accessed on 15 May 2019)];Eur. J. Neurol. 2012 19:1509–1517. doi: 10.1111/j.1468-1331.2012.03723.x. Available online: .
    1. Siciliano G., D’Avino C., Corona A., Barsacchi R., Kusmic C., Rocchi A., Pastorini E., Murri L. Impaired oxidative metabolism and lipid peroxidation in exercising muscle from ALS patients. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2002;3:57–62. doi: 10.1080/146608202760196011.
    1. Serbest G., Burkhardt M.F., Siman R., Raghupathi R., Saatman K.E. Temporal Profiles of Cytoskeletal Protein Loss following Traumatic Axonal Injury in Mice. Neurochem. Res. 2007;32:2006–2014. doi: 10.1007/s11064-007-9318-9.
    1. Cole K., Perez-Polo J.R. Neuronal trauma model: In search of Thanatos. [(accessed on 15 May 2019)];Int. J. Dev. Neurosci. 2004 22:485–496. doi: 10.1016/j.ijdevneu.2004.07.015. Available online: .
    1. Chiò A., Benzi G., Dossena M., Mutani R., Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128:472–476. doi: 10.1093/brain/awh373.
    1. Chio A., Calvo A., Dossena M., Ghiglione P., Mutani R., Mora G. ALS in Italian professional soccer players: The risk is still present and could be soccer-specific. Amyotroph. Lateral Scler. 2009;10:205–209. doi: 10.1080/17482960902721634.
    1. Lehman E.J., Hein M.J., Baron S.L., Gersic C.M. Neurodegenerative causes of death among retired National Football League players. [(accessed on 15 May 2019)];Neurology. 2012 79:1970–1974. doi: 10.1212/WNL.0b013e31826daf50. Available online: .
    1. Abel E.L. Football Increases the Risk for Lou Gehrig’s Disease, Amyotrophic Lateral Sclerosis. [(accessed on 15 May 2019)];Percept. Mot. Ski. 2007 104:1251–1254. doi: 10.2466/pms.104.4.1251-1254. Available online: .
    1. Valenti M., Pontieri F.E., Conti F., Altobelli E., Manzoni T., Frati L. Amyotrophic lateral sclerosis and sports: A case-control study. [(accessed on 15 May 2019)];Eur. J. Neurol. 2005 12:223–225. doi: 10.1111/j.1468-1331.2004.00978.x. Available online: .
    1. Asan Z. Spinal Concussion in Adults: Transient Neuropraxia of Spinal Cord Exposed to Vertical Forces. [(accessed on 15 May 2019)];World Neurosurg. 2018 114:e1284–e1289. doi: 10.1016/j.wneu.2018.03.198. Available online: .
    1. Blecher R., Elliott M.A., Yilmaz E., Dettori J.R., Oskouian R.J., Patel A., Clarke A., Hutton M., McGuire R., Dunn R., et al. Contact Sports as a Risk Factor for Amyotrophic Lateral Sclerosis: A Systematic Review. [(accessed on 15 May 2019)];Glob. Spine J. 2019 9:104–118. doi: 10.1177/2192568218813916. Available online: .
    1. Margaritis I., Rousseau A.S. Does physical exercise modify antioxidant requirements? [(accessed on 15 May 2019)];Nutr. Res. Rev. 2008 21:3–12. doi: 10.1017/S0954422408018076. Available online: .
    1. Mastaloudis A., Morrow J.D., Hopkins D.W., Devaraj S., Traber M.G. Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. [(accessed on 15 May 2019)];Free Radic. Biol. Med. 2004 36:1329–1341. doi: 10.1016/j.freeradbiomed.2004.02.069. Available online: .
    1. Jówko E., Długołęcka B., Makaruk B., Cieśliński I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. [(accessed on 15 May 2019)];Eur. J. Nutr. 2015 54:783–791. doi: 10.1007/s00394-014-0757-1. Available online: .
    1. Andújar I., Recio M.C., Giner R.M., Ríos J.L. Cocoa Polyphenols and Their Potential Benefits for Human Health. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2012 2012:906252. doi: 10.1155/2012/906252. Available online:
    1. Slattery K.M., Dascombe B., Wallace L.K., Bentley D.J., Coutts A.J. Effect of N-acetylcysteine on Cycling Performance after Intensified Training. [(accessed on 15 May 2019)];Med. Sci. Sport Exerc. 2014 46:1114–1123. doi: 10.1249/MSS.0000000000000222. Available online: .
    1. Gross M., Baum O., Hoppeler H. Antioxidant supplementation and endurance training: Win or loss? Eur. J. Sport Sci. 2011;11:27–32. doi: 10.1080/17461391003699088.
    1. Chou C.C., Sung Y.C., Davison G., Chen C.Y., Liao Y.H. Short-Term High-Dose Vitamin C and E Supplementation Attenuates Muscle Damage and Inflammatory Responses to Repeated Taekwondo Competitions: A Randomized Placebo-Controlled Trial. [(accessed on 15 May 2019)];Int. J. Med. Sci. 2018 15:1217–1226. doi: 10.7150/ijms.26340. Available online: .
    1. Braakhuis A.J., Hopkins W.G. Impact of Dietary Antioxidants on Sport Performance: A Review. [(accessed on 15 May 2019)];Sport Med. 2015 45:939–955. doi: 10.1007/s40279-015-0323-x. Available online: .
    1. de Oliveira D.C.X., Rosa F.T., Simões-Ambrósio L., Jordao A.A., Deminice R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. [(accessed on 15 May 2019)];Nutrition. 2019 63–64:29–35. doi: 10.1016/j.nut.2019.01.007. Available online: .
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. [(accessed on 15 May 2019)];Am. J. Clin. Nutr. 2004 79:727–747. doi: 10.1093/ajcn/79.5.727. Available online: .
    1. Juszkiewicz A., Glapa A., Basta P., Petriczko E., Żołnowski K., Machaliński B., Trzeciak J., Łuczkowska K., Skarpańska-Stejnborn A. The effect of L-theanine supplementation on the immune system of athletes exposed to strenuous physical exercise. [(accessed on 15 May 2019)];J. Int. Soc. Sports Nutr. 2019 16:7. doi: 10.1186/s12970-019-0274-y. Available online: .
    1. Machado Á.S., da Silva W., Souza M.A., Carpes F.P. Green Tea Extract Preserves Neuromuscular Activation and Muscle Damage Markers in Athletes under Cumulative Fatigue. [(accessed on 15 May 2019)];Front. Physiol. 2018 9:1137. doi: 10.3389/fphys.2018.01137. Available online: .
    1. Medved I., Brown M.J., Bjorksten A.R., Murphy K.T., Petersen A.C., Sostaric S., Gong X., McKenna M.J. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. [(accessed on 15 May 2019)];J. Appl. Physiol. 2004 97:1477–1485. doi: 10.1152/japplphysiol.00371.2004. Available online: .
    1. Holdiness M.R. Clinical Pharmacokinetics of N-Acetylcysteine. [(accessed on 15 May 2019)];Clin. Pharmacokinet. 1991 20:123–134. doi: 10.2165/00003088-199120020-00004. Available online: .
    1. Antonioni A., Fantini C., Dimauro I., Caporossi D. Redox homeostasis in sport: Do athletes really need antioxidant support? [(accessed on 15 May 2019)];Res. Sport Med. 2019 27:147–165. doi: 10.1080/15438627.2018.1563899. Available online: .
    1. Poljsak B., Šuput D., Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. [(accessed on 15 May 2019)];Oxid. Med. Cell. Longev. 2013 2013:956792. doi: 10.1155/2013/956792. Available online: .
    1. Merry T.L., Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? [(accessed on 15 May 2019)];J. Physiol. 2016 594:5135–5147. doi: 10.1113/JP270654. Available online: .
    1. Margaritelis N.V., Paschalis V., Theodorou A.A., Kyparos A., Nikolaidis M.G. Antioxidants in Personalized Nutrition and Exercise. [(accessed on 15 May 2019)];Adv. Nutr. 2018 9:813–823. doi: 10.1093/advances/nmy052. Available online: .
    1. Moraes A., Andreato L.V., Branco B.H.M., Silva E.L., Gonçalves M.A., Santos R.Z., Becker A.M., Cavalcante L., Casagrande F., Benetti M. Effects of N-acetylcysteine supplementation on cellular damage and oxidative stress indicators in volleyball athletes. [(accessed on 15 May 2019)];J. Exerc. Rehabil. 2018 14:802. doi: 10.12965/jer.1836152.076. Available online: .
    1. Riva A., Vitale J.A., Belcaro G., Hu S., Feragalli B., Vinciguerra G., Cacchio M., Bonanni E., Giacomelli L., Eggenhöffner R., et al. Quercetin phytosome® in triathlon athletes: A pilot registry study. [(accessed on 15 May 2019)];Minerva Med. 2018 109:285–289. Available online: .
    1. Taghizadeh M., Malekian E., Memarzadeh M.R., Mohammadi A.A., Asemi Z. Grape Seed Extract Supplementation and the Effects on the Biomarkers of Oxidative Stress and Metabolic Profiles in Female Volleyball Players: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. [(accessed on 15 May 2019)];Iran. Red Crescent Med. J. 2016 18:e31314. doi: 10.5812/ircmj.31314. Available online: .
    1. Capó X., Martorell M., Busquets-Cortés C., Sureda A., Riera J., Drobnic F., Tur J.A., Pons A. Effects of dietary almond- and olive oil-based docosahexaenoic acid- and vitamin E-enriched beverage supplementation on athletic performance and oxidative stress markers. [(accessed on 15 May 2019)];Food Funct. 2016 7:4920–4934. doi: 10.1039/C6FO00758A. Available online: .
    1. Hadi A., Pourmasoumi M., Kafeshani M., Karimian J., Maracy M.R., Entezari M.H. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. [(accessed on 15 May 2019)];J. Diet. Suppl. 2017 14:346–357. doi: 10.1080/19390211.2016.1237400. Available online: .
    1. Żychowska M., Jastrzębski Z., Chruściński G., Michałowska-Sawczyn M., Nowak-Zaleska A. Vitamin C, A and E supplementation decreases the expression of HSPA1A and HSPB1 genes in the leukocytes of young polish figure skaters during a 10-day training camp. [(accessed on 15 May 2019)];J. Int. Soc. Sports Nutr. 2015 12:9. doi: 10.1186/s12970-015-0069-8. Available online: .
    1. Skarpańska-Stejnborn A., Basta P., Sadowska J., Pilaczyńska-Szczeńniak Ł. Effect of supplementation with chokeberry juice on the inflammatory status and markers of iron metabolism in rowers. [(accessed on 15 May 2019)];J. Int. Soc. Sports Nutr. 2014 11:48. doi: 10.1186/s12970-014-0048-5. Available online: .
    1. Nieman D.C., Gillitt N.D., Knab A.M., Shanely R.A., Pappan K.L., Jin F., Lila M.A. Influence of a Polyphenol-Enriched Protein Powder on Exercise-Induced Inflammation and Oxidative Stress in Athletes: A Randomized Trial Using a Metabolomics Approach. [(accessed on 15 May 2019)];PLoS ONE. 2013 8:e72215. doi: 10.1371/journal.pone.0072215. Available online: .
    1. Askari G., Ghiasvand R., Feizi A., Ghanadian S.M., Karimian J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. [(accessed on 15 May 2019)];J. Res. Med. Sci. 2012 17:637–641. Available online: .
    1. Askari G., Hajishafiee M., Ghiasvand R., Hariri M., Darvishi L., Ghassemi S., Iraj B., Hovsepian V. Quercetin and vitamin C supplementation: Effects on lipid profile and muscle damage in male athletes. [(accessed on 15 May 2019)];Int. J. Prev. Med. 2013 4:S58–S62. Available online: .
    1. Taghiyar M., Darvishi L., Askari G., Feizi A., Hariri M., Mashhadi N.S., Ghiasvand R. The effect of vitamin C and e supplementation on muscle damage and oxidative stress in female athletes: A clinical trial. [(accessed on 15 May 2019)];Int. J. Prev. Med. 2013 4:S16–S23. Available online: .
    1. Díaz-Castro J., Guisado R., Kajarabille N., García C., Guisado I.M., de Teresa C., Ochoa J.J. Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. [(accessed on 15 May 2019)];Eur. J. Nutr. 2012 51:791–799. doi: 10.1007/s00394-011-0257-5. Available online: .
    1. Nishizawa M., Hara T., Miura T., Fujita S., Yoshigai E., Ue H., Hayashi Y., Kwon A.H., Okumura T., Isaka T. Supplementation with a Flavanol-rich Lychee Fruit Extract Influences the Inflammatory Status of Young Athletes. [(accessed on 15 May 2019)];Phyther. Res. 2011 25:1486–1493. doi: 10.1002/ptr.3430. Available online: .
    1. Teixeira V.H., Valente H.F., Casal S.I., Marques A.F., Moreira P.A. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. [(accessed on 15 May 2019)];Med. Sci. Sports Exerc. 2009 41:1752–1760. doi: 10.1249/MSS.0b013e31819fe8e3. Available online: .
    1. Ristow M., Zarse K., Oberbach A., Klöting N., Birringer M., Kiehntopf M., Stumvoll M., Kahn C.R., Blüher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA. 2009;106:8665–8670. doi: 10.1073/pnas.0903485106.
    1. Peternelj T.T., Coombes J.S. Antioxidant supplementation during exercise training: Beneficial or detrimental? Sports Med. 2011;41:1043–1069. doi: 10.2165/11594400-000000000-00000.
    1. Dickinson B.C., Peltier J., Stone D., Schaffer D.V., Chang C.J. Nox2 redox signaling maintains essential cell populations in the brain. [(accessed on 15 May 2019)];Nat. Chem. Biol. 2011 7:106–112. doi: 10.1038/nchembio.497. Available online: .
    1. Zhang L., Jope R.S. Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. [(accessed on 15 May 2019)];Neurobiol. Aging. 2019 20:271–278. doi: 10.1016/S0197-4580(99)00049-4. Available online: .
    1. Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. [(accessed on 15 May 2019)];Int. J. Biomed. Sci. 2008 4:89–96. Available online: .

Source: PubMed

3
Subscribe