The effect of modulated electro-hyperthermia on local disease control in HIV-positive and -negative cervical cancer women in South Africa: Early results from a phase III randomised controlled trial

Carrie Anne Minnaar, Jeffrey Allan Kotzen, Olusegun Akinwale Ayeni, Thanushree Naidoo, Mariza Tunmer, Vinay Sharma, Mboyo-Di-Tamba Vangu, Ans Baeyens, Carrie Anne Minnaar, Jeffrey Allan Kotzen, Olusegun Akinwale Ayeni, Thanushree Naidoo, Mariza Tunmer, Vinay Sharma, Mboyo-Di-Tamba Vangu, Ans Baeyens

Abstract

Background: The global burden of cervical cancer remains high with the highest morbidity and mortality rates reported in developing countries. Hyperthermia as a chemo- and radiosensitiser has shown to improve treatment outcomes. This is an analysis of the local control results at six months post-treatment of patients enrolled in an ongoing study investigating the effects of the addition of modulated electro-hyperthermia (mEHT) to chemoradiotherapy for the treatment of HIV-positive and -negative cervical cancer patients in a low-resource setting.

Methods: This ongoing Phase III randomised controlled trial, conducted at a state hospital in Johannesburg, South Africa, was registered with the appropriate ethics committee. After signing an informed consent, participants with FIGO stages IIB to IIIB squamous cell carcinoma of the cervix were randomised to receive chemoradiotherapy with/without mEHT using a secure online random-sampling tool (stratum: HIV status) accounting for age and stage. Reporting physicians were blind to treatment allocation. HIV-positive participants on antiretroviral treatment, or with a CD4 count >200cell/μL were included. mEHT was administered 2/weekly immediately before external beam radiation. The primary end point is local disease control (LDC) and secondary endpoints are toxicity; quality of life analysis; and two year survival. We report on six month LDC, including nodes visualised in the radiation field on 18F-FDG PET/CT (censored for six month survival), and six month local disease free survival (LDFS) (based on intention to treat). Trial status: Recruitment closed (ClinicalTrials.gov: NCT03332069).

Results: 271 participants were recruited between January 2014 and November 2017, of which 210 were randomised for trial and 202 were available for analysis at six months post-treatment (mEHT: n = 101; Control: n = 101). Six month LDFS was higher in the mEHT Group (n = 39[38.6%]), than in the Control Group (n = 20[19.8%]); p = 0.003). LDC was also higher in the mEHT Group (n = 40[45.5%]) than the Control Group (n = 20[24.1%]); (p = 0.003).

Conclusion: Our results show that mEHT is effective as a chemo-radiosensitiser for cervical cancer, even in high risk a patients and resource-constrained settings.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Trial profile: Consort flow diagram.
Fig 1. Trial profile: Consort flow diagram.
Abbreviations: mEHT: Modulated Electro-Hyperthermia; LDFS: Local Disease Free Survival.
Fig 2. Tumour Response as Seen on…
Fig 2. Tumour Response as Seen on 18F-FDG PET/CT (PERCIST 1.0) by Treatment Group.
mEHT: Fischer’s exact table of association between all four metabolic responses and mEHT: p = 0.005*. Abbreviations: mEHT: Modulated electro-hyperthermia; CMR: Complete Metabolic Response; PMR: Partial Metabolic Response; SMD: Stable Metabolic Disease; PMD: Progressed Metabolic Disease.
Fig 3. Tumour Response on 18 F-FDG…
Fig 3. Tumour Response on 18F-FDG PET/CT (PERCIST 1.0) by Treatment Group and HIV Status.
Total participants in each subgroup: HIV-Positive mEHT: n = 40; HIV-Positive Control: n = 35; HIV-Negative mEHT: n = 45; HIV-Negative Control: n = 38. Abbreviations: mEHT: Modulated electro-hyperthermia.

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A J Clin. 2018;6(68):394–424.
    1. Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, Colombo N. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2017;28(suppl_4):iv72–iv83. 10.1093/annonc/mdx220
    1. Denny L, Anorlu R. Cervical cancer in Africa. Cancer Epidemiol Biomarkers Prev. 2012;21(9):1434–8. 10.1158/1055-9965.EPI-12-0334
    1. Grover S, Xu MJ, Yeager A, Rosman L, Groen RS, Chackungal S, et al. A Systematic Review of Radiotherapy Capacity in Low- and Middle-Income Countries. Front Oncol. 2015;4(380):1–11.
    1. Moodley M. Cervical cancer in Southern Africa: the challenges. South African J Gynaecol Oncol. 2009;1(1):11–3.
    1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer Today (powered by GLOBOCAN 2018) [Internet]. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al., editors. IARC CancerBase No. 15; 2018. Available from:
    1. Shrestha AD, Neupane D, Vedsted P, Kallestrup P. Cervical Cancer Prevalence, Incidence and Mortality in Low and Middle Income Countries: A Systematic Review. Asian Pac J Cancer Prev. 2018;19(2):319–24. 10.22034/APJCP.2018.19.2.319
    1. Coghill AE, Newcomb PA, Madeleine MM, Richardson BA, Mutyaba I, Okuku F, et al. Contribution of HIV infection to mortality among cancer patients in Uganda. Aids. 2013;27(18):2933–42. 10.1097/01.aids.0000433236.55937.cb
    1. Gichangi P, Bwayo J, Estambale B, Rogo K, Njuguna E, Ojwang S, et al. HIV impact on acute morbidity and pelvic tumor control following radiotherapy for cervical cancer. Gynecol Oncol. 2006;100(2):405–11. 10.1016/j.ygyno.2005.10.006
    1. Simonds HM, Neugu AI, Jacobson JS. HIV Status and acute hematological toxicity among cervix cancer patients undergoing radical chemoradiation. Int J Gynecol Cancer. 2015;25(5):884–90. 10.1097/IGC.0000000000000441
    1. Dryden-Peterson S, Bvochora-Nsingo M, Suneja G, Efstathiou JA, Grover S, Chiyapo S, et al. HIV infection and survival among women with cervical cancer. J Clin Oncol. 2016;34(31):3749–57. 10.1200/JCO.2016.67.9613
    1. Lutgens L, Van Der Zee J, Pijls-Johannesma M, De Haas-kock D, Buijsen J, Mastrigt G, et al. Combined use of hyperthermia and radiation therapy for treating locally advanced cervical carcinoma (Review). Cochrane Database Syst Rev. 2010;(1):Article No. CD006377 10.1002/14651858.CD006377.pub2
    1. Datta NR, Rogers S, Klingbiel D, Gómez S, Puric E, Bodis S. Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: a systematic review with conventional and network meta-analyses. Int J Hyperth. 2016;32(7):809–21.
    1. Franckena M, de Wit R, Ansink AC, Notenboom A, Canters RAM, Fatehi D, et al. Weekly systemic cisplatin plus locoregional hyperthermia: An effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area. Int J Hyperth. 2007;23(5):443–50.
    1. Rietbroek RC, Bakker PJM, Schilthuis MS, Postma AJ, Zum Vörde Sive Vörding PJ, Gonzalèz DG, et al. Feasibility, toxicity, and preliminary results of weekly loco-regional hyperthermia and cisplatin in patients with previously irradiated recurrent cervical carcinoma or locally advanced bladder cancer. Int J Radiat Oncol Biol Phys Biol Phys. 1996;34(4):887–93.
    1. de Wit R, van der Zee J, can der Burg M, Kruit W, Logmans A, van Rhoon G, et al. A phase I/II study of combined weekly systemic cisplatin and locoregional hyperthermia in patients with previously irradiated recurrent carcinoma of the uterine cervix. Br J Cancer. 1999;80(9):1387–91. 10.1038/sj.bjc.6690533
    1. Lee S, Lee N, Cho D, Kim J. Treatment outcome analysis of chemotherapy combined with modulated electro-hyperthermia compared with chemotherapy alone for recurrent cervical cancer, following irradiation. Oncol Lett. 2017;14(1):73–8. 10.3892/ol.2017.6117
    1. Oei AL, Van Leeuwen CM, Ten Cate R, Rodermond HM, Buist MR, Stalpers LJA, et al. Hyperthermia selectively targets human papillomavirus in cervical tumors via p53-dependent apoptosis. Cancer Res. 2015;75(23):5120–9. 10.1158/0008-5472.CAN-15-0816
    1. Franckena M, Stalpers LJA, Koper PCM, Wiggenraad RGJ, Hoogenraad WJ, van Dijk JDP, et al. Long-Term Improvement in Treatment Outcome After Radiotherapy and Hyperthermia in Locoregionally Advanced Cervix Cancer: An Update of the Dutch Deep Hyperthermia Trial. Int J Radiat Oncol Biol Phys. 2008;70(4):1176–82. 10.1016/j.ijrobp.2007.07.2348
    1. Vasanthan A, Mitsumori M, Park JH, Zhi-Fan Z, Yu-Bin Z, Oliynychenko P, et al. Regional hyperthermia combined with radiotherapy for uterine cervical cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency. Int J Radiat Oncol Biol Phys. 2005;61(1):145–53. 10.1016/j.ijrobp.2004.04.057
    1. Sreenivasa G, Hildebrandt B, Kummel S, Jungnickel K, Cho CH, Tilly W, et al. Radiochemotherapy combined with regional pelvic hyperthermia induces high response and resectability rates in patients with nonresectable cervical cancer > or = FIGO IIB “bulky”. Int J Radiat Oncol Biol Phys. 2006;66(4):1159–67. 10.1016/j.ijrobp.2006.06.052
    1. Westermann AM, Jones EL, Schem B, Steen-banasik EM Van Der, Koper P, Mella O, et al. First Results of Triple-Modality Treatment Combining Radiotherapy, Chemotherapy, and Hyperthermia for the Treatment of Patients with Stage IIB, III, and IVA Cervical Carcinoma. Cancer. 2005;104(4):763–70. 10.1002/cncr.21128
    1. Flameling B, Nordberg T, Ott O, Issels RD, Wust P, Crezee J, et al. An international multicenter phase III study of chemoradiotherapy versus chemoradiotherapy plus hyperthermia for locally advanced cervical cancer. J Clin Oncol [Internet]. 2016;34(Supplement 15):17023 Available from: 10.1200/JCO.2016.34.15_suppl.e17023
    1. Harima Y, Ohguri T, Imada H, Sakurai H, Ohno T, Hiraki Y, et al. A multicentre randomised clinical trial of chemoradiotherapy plus hyperthermia versus chemoradiotherapy alone in patients with locally advanced cervical cancer. Int J Hyperth. 2016;32(7):801–8.
    1. Kok HP, Navarro F, Strigari L, Cavagnaro M, Crezee J. Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study. Int J Hyperth. 2018;34(6):714–30.
    1. Fiorentini G, Szasz A. Hyperthermia today: Electric energy, a new opportunity in cancer treatment. J Cancer Res Ther. 2006;2(2):41–6.
    1. Szasz A, Szasz O, Szasz N. Electro-hyperthermia: a new paradigm in Cancer Therapy. Dtsch Zeitschrift fur Onkol. 2001;33(3):91–9.
    1. Szasz O, Szasz A. Heating, Efficacy and Dose of Local Hyperthermia. Oncothermia J. 2016;17:38–47.
    1. Szigeti GP, Szasz O, Hegyi G. Personalised Dosing of Hyperthermia. J Cancer Diagnosis. 2016;1(1):1–9.
    1. Szasz O, Szigeti GP, Vancsik T, Szasz A. Hyperthermia Dosing and Depth of Effect. Open J Biophys. 2018;8(1):31–48.
    1. D’Ambrosio V, Dughiero F. Numerical model for RF capacitive regional deep hyperthermia in pelvic tumors. Med Biol Eng Comput. 2007;45(5):459–66. 10.1007/s11517-007-0177-y
    1. Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. Strong Synergy of Heat and Modulated Electromagnetic Field in Tumor Cell Killing. Strahlentherapie und Onkol. 2009;185(2):120–6.
    1. Szasz A, Szasz O, Szasz N. Principles and Practice of Oncothermia. New York: Springer International Publishing; 2011. 194–196 p.
    1. Pandita TK, Pandita S, Bhaumik SR. Molecular Parameters of Hyperthermia for Radiosensitization. Crit Rev Eukaryote Gene Expr. 2009;19(3):235–51.
    1. Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat Oncol. 2015;10(1):1–13.
    1. Szasz O, Szigeti GP, Szasz A. Connections between the Specific Absorption Rate and the Local Temperature. Open J Biophys. 2016;6(3):53–74.
    1. Peeken JC, Vaupel P, Combs SE, Combs SE. Integrating Hyperthermia into Modern Radiation Oncology: What Evidence Is Necessary? Front Oncol. 2017;7(Article 132):1–17.
    1. Dewhirst MW, Vujaskovic Z, Jones E, Thrall D. Re-setting the biologic rationale for thermal therapy. Int J Hyperth. 2005;21(8):779–90.
    1. Hurwitz M, Stauffer P. Hyperthermia, Radiation and Chemotherapy_ The Role of Heat in Multidisciplinary Cancer Care. Semin Oncol. 2014;41(6):714–29. 10.1053/j.seminoncol.2014.09.014
    1. van der Zee J. Heating the patient: a promising approach? Ann Oncol. 2002;13(8):1173–84. 10.1093/annonc/mdf280
    1. Frey B, Rubner Y, Wunderlich R, Weiss E, Pockley AG, Fietkau R, et al. Induction of Abscopal Anti-Tumor Immunity and Immunogenic Tumor Cell Death by Ionizing Irradiation–Implications for Cancer Therapies. Curr Med Chem. 2012;19:1751–64.
    1. Papp E, Vancsik T, Kiss E, Szasz O. Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open J Biophys. 2017;7:216–29.
    1. Andocs G, Meggyeshazi N, Balogh L, Spisak S. Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress Chaperones. 2015;20(1):37–46. 10.1007/s12192-014-0523-6
    1. Tsang Y, Huang C, Yang K, Chi M, Chiang H, Wang Y, et al. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. Biomed Cent Cancer. 2015;15:708.
    1. Andocs G, Rehman MU, Zhao Q, Tabuchi Y, Kanamori M, Kondo T. Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells. Cell Death Discov. 2016;2(16039):1–10.
    1. Lee S-Y, Kim J-H, Han Y-H, CHo D-H. The effect of modulated electro-hyperthermia on temperature and blood flow in human cervical carcinoma. Int J Hyperth. 2018;34(7):953–60.
    1. Fiorentini G, Patrizia D, Gina T, Carlo M. Phase II clinical study on relapsed malignant gliomastreated with electro-hyperthermia. Ocothermia J. 2013;7(2):2013.
    1. Huilgol N, Gupta-dutta S, Sridhar CR. Hyperthermia in the management of head and neck cancer–A single institution study from India. Oncothermia J. 2014;10(2):64–7.
    1. Szasz A. Current Status of Oncothermia Therapy for Lung Cancer. Korean J Thorasic Cardiovasc Surg. 2014;47(2):77–93.
    1. Dani A, Varkonyi A, Magyar T, Kalden M, Szasz A. Clinical study for advanced pancreas cancer treated by oncothermia Clinical study for advanced pancreas cancer treated by oncothermia. Oncothermia J. 2012;6(3):11–25.
    1. National Cancer Registry. Cancer in South Africa 2013: Full Report. Vol. 000 2014.
    1. UNAIDS. Fact Sheet—World AIDS Day 2018 [Internet]. World AIDS Day. 2018 [cited 2019 Jan 7]. p. 1–6. Available from:
    1. Ghebre RG, Grover S, Xu MJ, Chuang LT, Simonds H. Cervical cancer control in HIV-infected women: Past, present and future. Gynecol Oncol Reports. 2017;21:101–8.
    1. Firnhaber C, Zungu K, Levin S, Michelow P, Montaner LJ, McPhail P, et al. Diverse and high prevalence of human papillomavirus associated with a significant high rate of cervical dysplasia in human immunodeficiency virus-infected women in Johannesburg, South Africa. Acta Cytol. 2009;53(1):10–7. 10.1159/000325079
    1. Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynecol Obstet. 2009;105(2):103–4.
    1. Pötter R, Tanderup K, Kirisits C, de Leeuw A, Kirchheiner K, Nout R, et al. The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018;9:48–60. 10.1016/j.ctro.2018.01.001
    1. Sapienza LG, Gomes MJL, Calsavara VF, Leitao MM, Baiocchi G. Does para-aortic irradiation reduce the risk of distant metastasis in advanced cervical cancer? A systematic review and meta-analysis of randomized clinical trials. Gynecol Oncol. 2017;144(2):312–7. 10.1016/j.ygyno.2016.11.044
    1. van Leeuwen CM, Oei AL, Chin KWTK, Crezee J, Bel A, Westermann AM, et al. A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiat Oncol. 2017;12(1):1–8. 10.1186/s13014-016-0740-5
    1. Einstein MH, Ndlovu N, Lee J, Stier EA, Kotzen J, Garg M, et al. Cisplatin and radiation therapy in HIV-positive women with locally advanced cervical cancer in sub-Saharan Africa: A phase II study of the AIDS malignancy consortium. Gynecol Oncol. 2019;153(1):20–5. 10.1016/j.ygyno.2019.01.023
    1. Hyun JO, Lodge MA, Wahl RL. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology. 2016;280(2):576–84. 10.1148/radiol.2016142043
    1. Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J, et al. Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers (Basel). 2019;11(60):1–20.
    1. Chhabra S, Devi S, Chopra S, Singh A. Staging Issues in Cervical Cancer. Cancer Surg. 2016;01(02):1–5.
    1. van der Zee J, Gonzalez D, van Rhoon G et al. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumors: A prospective, randomized, multicentre trial. Lancet. 2000;355:1119–25.
    1. Harima Y, Nagata K, Harima K, Ostapenko V V., Tanaka Y, Sawada S. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. Int J Hyperth. 2009;25(5):338–43.
    1. Chen H-W, Fan J-J, Luo W. A randomized trial of hyperthermo-radiochemotherapy for uterine cancer. Vol. 24, Chinese Journal of Clinical Oncology. 1997. 249–251 p.
    1. Datta NR, Bose HK, Kapoor A. Thermoradiotherapy in the management of Carcinoma Cervix (Stage IIIB): A controlled Clinical Study. Ind Med Gaz. 1987;(121):68–71.
    1. Sharma S, Singhal S, Sandhu AP, Ghoshal S, Gupta BD, Yadav NS. Local thermo-radiotherapy in carcinoma cervix: improved local control versus increased incidence of distant metastasis. Asia Ocean J Obstet Gynaecol. 1991;17(1):5–12.
    1. de la Peña MJ, de Vega Fernández VM, Rodríguez MR, Arranz JC, Herráiz Hidalgo L, Moreno EA. Current imaging modalities in the diagnosis of cervical cancer. Gynecol Oncol. 2008;110(Supp):S49–54. 10.1016/j.ygyno.2008.05.030
    1. Hansen HV, Loft A, Berthelsen AK, Christensen IJ, Høgdall C, Engelholm SA. Survival outcomes in patients with cervical cancer after inclusion of PET/CT in staging procedures. Eur J Nucl Med Mol Imaging. 2015;42(12):1833–9. 10.1007/s00259-015-3113-7
    1. Magné N, Chargari C, Vicenzi L, Gillion N, Messai T, Magné J, et al. New trends in the evaluation and treatment of cervix cancer: The role of FDG PET. Cancer Treat Rev. 2008. December 1;34(8):671–81. 10.1016/j.ctrv.2008.08.003
    1. Morkel M, Ellmann A, Warwick J, Simonds H. Evaluating the role of f-18 fluorodeoxyglucose positron emission tomography/computed tomography scanning in the staging of patients with stage IIIB cervical carcinoma and the impact on treatment decisions. Int J Gynecol Cancer. 2018;28(2):379–84. 10.1097/IGC.0000000000001174
    1. Testa AC, Di Legge A, De Blasis I, Cristina Moruzzi M, Bonatti M, Collarino A, et al. Imaging techniques for the evaluation of cervical cancer. Best Pract Res Clin Obstet Gynaecol. 2014;28(5):741–68. 10.1016/j.bpobgyn.2014.04.009
    1. Fatehi D, Van der Zee J, Van der Wal E, Van Wieringen WN, Fatehi D, Van der Zee J, et al. Temperature data analysis for 22 patients with advanced cervical carcinoma treated in Rotterdam using radiotherapy, hyperthermia and chemotherapy: A reference point is needed. Int J Hyperth. 2006;22(4):353–63.
    1. Franckena M, Lutgens LC, Koper PC, Kleynen CE, van der Steen-Banasik EM, Jobsen JJ, et al. Radiotherapy and Hyperthermia for Treatment of Primary Locally Advanced Cervix Cancer: Results in 378 Patients. Int J Radiat Oncol Biol Phys. 2009;73(1):242–50. 10.1016/j.ijrobp.2008.03.072
    1. Herd O, Francies F, Kotzen J, Smith T, Nxumalo Z, Muller X, et al. Chromosomal radiosensitivity of human immunodeficiency virus positive/negative cervical cancer patients in South Africa. Mol Med Rep. 2016;13(1):130–6. 10.3892/mmr.2015.4504

Source: PubMed

3
Subscribe