Achieving postprandial glucose control with lixisenatide improves glycemic control in patients with type 2 diabetes on basal insulin: a post-hoc analysis of pooled data

Jaime A Davidson, William Stager, Sachin Paranjape, Rachele Berria, Lawrence A Leiter, Jaime A Davidson, William Stager, Sachin Paranjape, Rachele Berria, Lawrence A Leiter

Abstract

Background: To examine the impact on glycemic control of achieving postprandial glucose (PPG) target with lixisenatide, a once-daily glucagon-like peptide-1 receptor agonist approved in the US, in patients with uncontrolled type 2 diabetes (T2D) on basal insulin, an agent that primarily targets fasting plasma glucose.

Methods: A post hoc pooled analysis was conducted using clinical trial data extracted from the intent-to-treat subpopulation of patients with T2D who participated in the 24-week, phase 3, randomized, double-blind, placebo-controlled, 2-arm parallel-group, multicenter GetGoal-L (NCT00715624), GetGoal-Duo 1 (NCT00975286) and GetGoal-L Asia trials (NCT00866658).

Results: Data from 587 lixisenatide-treated patients and 484 placebo-treated patients were included. Patients on lixisenatide were more likely to achieve a PPG target of < 10 mmol/L (< 180 mg/dL) than placebo-treated patients (P < 0.001), regardless of baseline fasting plasma glucose (FPG) levels. More importantly, those who reached the PPG target experienced a significantly greater reduction in mean HbA1c, were more likely to achieve HbA1c target of < 53 mmol/mol (< 7.0%), and experienced weight loss. Those outcomes were achieved with no significant differences in the risk of symptomatic hypoglycemia compared with placebo.

Conclusion: Compared with placebo, addition of lixisenatide to basal insulin improved HbA1c and reduced PPG, without increasing hypoglycemia risk. These findings highlight the importance of PPG control in the management of T2D, and provide evidence that adding an agent to basal insulin therapy that also impacts PPG has therapeutic value for patients who are not meeting glycemic targets.

Trial registration: NCT00715624. Registered 15 July 2008, NCT00975286. Registered 11 September 2009, NCT00866658. Registered 20 March 2009.

Keywords: Glucagon-like peptide-1 receptor; Glycemic targets; Lixisenatide; Post-prandial glucose; Type 2 diabetes.

Conflict of interest statement

Competing interestsJAD has been a consultant or served on the advisory board for Amgen Inc., Aspire Bariatrics, AstraZeneca, Boston Therapeutics, Eli Lilly & Co., GSK, Janssen Pharmaceuticals, Merck & Co., Inc., Novo Nordisk, and Valeritas; has been a speaker for AstraZeneca, Janssen, Merck-Serono, Novo Nordisk, and Takeda; and has received a research grant from AstraZeneca. WS, SP, and RB are employees and stockholders of Sanofi. LAL. has been a consultant for AstraZeneca, Boehringer Ingelheim, Eli Lilly & Co., Janssen, Merck & Co., Inc., Novo Nordisk, Sanofi, and Servier; has received research support from AstraZeneca, Boehringer Ingelheim, Eli Lilly & Co., GlaxoSmithKline, Janssen, Merck & Co., Inc., Novo Nordisk, and Sanofi; and has provided continuing medical education on behalf of AstraZeneca, Boehringer Ingelheim, Eli Lilly & Co., Janssen, Merck & Co., Inc., Novo Nordisk, Sanofi, and Servier.

© The Author(s). 2020.

Figures

Fig. 1
Fig. 1
Percentage of patients who achieved ADA-recommended PPG target Abbreviations: ADA American Diabetes Association, FPG fasting plasma glucose, PPG postprandial glucose
Fig. 2
Fig. 2
Change in HbA1c from baseline to Week 24. a Patients with controlled baseline FPG. b Patients with uncontrolled baseline FPG. Abbreviations: HbA1c glycated hemoglobin, FPG fasting plasma glucose, PPG postprandial glucose. aP = 0.008. bP < 0.001 for comparison between PPG response categories for both baseline FPG categories; Cochran–Mantel–Haenszel test stratified by study
Fig. 3
Fig. 3
Percentage of patients with controlled (a) and uncontrolled (b) baseline FPG achieving HbA1c < 53 mmol/mol (< 7.0%) at Week 24. Abbreviations: HbA1c glycated hemoglobin, FPG fasting plasma glucose, PPG postprandial glucose. aP < 0.001 for comparison between PPG response categories

References

    1. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.
    1. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–412. doi: 10.1136/bmj.321.7258.405.
    1. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–1589. doi: 10.1056/NEJMoa0806470.
    1. American Diabetes Association Standards of medical care in diabetes. Diabetes Care. 2019;42(Suppl 1):S1–S193.
    1. International Diabetes Federation . IDF guideline on self-monitoring of blood glucose in non-insulin treated type 2 diabetes. 2011.
    1. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of endocrinology on the comprehensive type 2 diabetes management algorithm – 2018 executive summary. Endocr Pract. 2018;24:91–120. doi: 10.4158/CS-2017-0153.
    1. International Diabetes Federation . IDF clinical practice recommendations for managing type 2 diabetes in primary care. 2017.
    1. Khunti K, Wolden ML, Thorsted BL, Andersen M, Davies MJ. Clinical inertia in people with type 2 diabetes: a retrospective cohort study of more than 80,000 people. Diabetes Care. 2013;36:3411–3417. doi: 10.2337/dc13-0331.
    1. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA (1c) Diabetes Care. 2003;26:881–885. doi: 10.2337/diacare.26.3.881.
    1. Riddle M, Umpierrez G, DiGenio A, Zhou R, Rosenstock J. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care. 2011;34:2508–2514. doi: 10.2337/dc11-0632.
    1. Van Bloemendaal L, IJzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes. 2014;63:4186–4196. doi: 10.2337/db14-0849.
    1. Werner U. Effects of the GLP-1 receptor agonist lixisenatide on postprandial glucose and gastric emptying – preclinical evidence. J Diabetes Complicat. 2014;28:110–114. doi: 10.1016/j.jdiacomp.2013.06.003.
    1. Vilsbøll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771. doi: 10.1136/bmj.d7771.
    1. Fonseca VA, Alvarado-Ruiz R, Raccah D, Boka G, Miossec P, Gerich JE. Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy. A randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-mono) Diabetes Care. 2012;35:1225–1231. doi: 10.2337/dc11-1935.
    1. Barnett AH. Lixisenatide: evidence for its potential use in the treatment of type 2 diabetes. Core Evid. 2011;6:67–79. doi: 10.2147/CE.S15525.
    1. Riddle MC, Aronson R, Home P, Marre M, Niemoeller E, Miossec P, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled by established basal insulin: a 24-week, randomized, placebo-controlled comparison (GetGoal-L) Diabetes Care. 2013;36:2489–2496. doi: 10.2337/dc12-2454.
    1. Riddle MC, Forst T, Aronson R, Sauque-Reyna L, Souhami E, Silvestre L, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: a 24-week, randomized, placebo-controlled study (GetGoal-duo 1) Diabetes Care. 2013;36:2497–2503. doi: 10.2337/dc12-2462.
    1. Seino Y, Min KW, Niemoeller E, Takami A. Randomized, double-blind, placebo-controlled trial of the once-daily GLP-1 receptor agonist lixisenatide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal-L-Asia) Diabetes Obes Metab. 2012;14:910–917. doi: 10.1111/j.1463-1326.2012.01618.x.
    1. Buse JB, Bergenstal RM, Glass LC, Heilmann CR, Lewis MS, Kwan A, et al. Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Internal Med. 2011;154:103–112. doi: 10.7326/0003-4819-154-2-201101180-00300.
    1. Diamant M, Nauck MA, Shaginian R, Malone JK, Cleall S, Reaney M, et al. Glucagon-like peptide 1 receptor agonist or bolus insulin with optimized basal insulin in type 2 diabetes. Diabetes Care. 2014;37:2763–2773. doi: 10.2337/dc14-0876.
    1. Bergenstal Richard M., Strock Ellie, Mazze Roger, Powers Margaret A., Monk Arlene M., Richter Sara, Souhami Elisabeth, Ahrén Bo. Diurnal glucose exposure profiles of patients treated with lixisenatide before breakfast or the main meal of the day: An analysis using continuous glucose monitoring. Diabetes/Metabolism Research and Reviews. 2017;33(4):e2879. doi: 10.1002/dmrr.2879.

Source: PubMed

3
Subscribe