EXclusion of non-Involved uterus from the Target Volume (EXIT-trial): an individualized treatment for locally advanced cervical cancer using modern radiotherapy and imaging techniques

Katrien Vandecasteele, Philippe Tummers, Mieke Van Bockstal, Pieter De Visschere, Tom Vercauteren, Werner De Gersem, Hannelore Denys, Eline Naert, Amin Makar, Wilfried De Neve, Katrien Vandecasteele, Philippe Tummers, Mieke Van Bockstal, Pieter De Visschere, Tom Vercauteren, Werner De Gersem, Hannelore Denys, Eline Naert, Amin Makar, Wilfried De Neve

Abstract

Background: Definitive chemoradiotherapy is standard of care in locally advanced cervical cancer (LACC). Both toxicity and local relapse remain major concerns in this treatment. We hypothesize that a magnetic resonance imaging (MRI) based redefining of the radiotherapeutic target volume will lead to a reduction of acute and late toxicity. In our center, chemoradiotherapy followed by hysterectomy was implemented successfully in the past. This enables us to assess the safety of reducing the target volume but also to explore the biological effects of chemoradiation on the resected hysterectomy specimen.

Methods: The EXIT-trial is a phase II, single arm study aimed at LACC patients. This study evaluates whether a MRI-based exclusion of the non-tumor-bearing parts of the uterus out of the target volume results in absence of tumor in the non-high doses irradiated part of the uterus in the hysterectomy specimen. Secondary endpoints include a dosimetric comparison of dose on normal tissue when comparing study treatment plans compared to treatment of the whole uterus at high doses; acute and chronic toxicity, overall survival, local relapse- and progression-free survival. In the translational part of the study, we will evaluate the hypothesis that the baseline apparent diffusion coefficient (ADC) values of diffusion weighted MRI and its evolution 2 weeks after start of CRT, for the whole tumor as well as for intra-tumoral regions, is prognostic for residual tumor on the hysterectomy specimen.

Discussion: Although MRI is already used to guide target delineation in brachytherapy, the EXIT-trial is the first to use this information to guide target delineation in external beam radiotherapy. Early therapy resistance prediction using DW-MRI opens a window for early treatment adaptation or further dose-escalation on tumors/intratumoral regions at risk for treatment failure.

Trial registration: Belgian Registration: B670201526181 (prospectively registered, 26/11/2015); ClinicalTrials.gov Identifier: NCT03542942 (retrospectively registered, 17/5/2018).

Keywords: Apparent diffusion coefficient; Diffusion weighted MRI; Locally advanced cervical cancer; Target volume; Uterus.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the ethics committee of the Ghent University Hospital (B670201526181). Every patient signed an informed consent before starting any study procedure.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Workflow per patient and situation of the different time-points for each study. DW-MRI: diffusion-weighted MRI; PTV_EXIT: planning target volume as defined within the EXIT-trial; MRI HRT: Magnetic resonance imaging of the HRT specimen; FDG-PET: 18-fluorodeoxyglucose PET scan; PTV: planning target volume; MRI: magnetic resonance imaging. C: weekly chemotherapy; RT: radiotherapy; D98: dose received in 98% of the volume. *: Imaging which requires extra effort of the patient; **: only if node-positive at diagnosis
Fig. 2
Fig. 2
delineation of treatment volumes following state-of-the-art (a en b) en EXIT-trial (a en c). a delineation of elective lymph node areas are state-of-the-art and identical in standard treatment & the EXIT_trial. Clinical target volume (CTV) of the lymph nodes (lnn) = CTV_Lnn (yellow) = elective lnn areas (common, external and internal lnn, obturator and presacral region; inclusion of para-aortic lnn if any pelvic lnn are affected). Planning target volume (PTV) of the lnn (PTV_Lnn; blue) is created using an isotropic margin of 5 mm around the CTV_Lnn. b GTV of the primary tumor (GTV_prim = red): primary tumor delineated using T2 weighted MRI images (state of the art). CTV of the primary tumor (CTV_prim = blue): includes GTV_prim, whole uterus, non-affected parts of the cervix and parametria, upper vaginal 1/3 to ½ (minimal vaginal margin of 2 cm to the GTV_prim). PTV of the primary tumor (PTV_prim = purple): margin around the CTV_prim of 10 mm antero-posterior (AP); 5 mm left-right (LR) and 5 mm supero-inferior (SI)
Fig. 3
Fig. 3
3D-mold. Example of a 3D-mold model created in Blender. The uterus, mold and knobs are depicted respectively in white, blue and green. The mold supports the uterus specimen, while the tissue is fixated to the knobs during sugery
Fig. 4
Fig. 4
Dose Volume Histograms with and without the entire uterus included in the planning target volume. Dose Volume Histograms (DVHs) of 2 patients treated with a partial (yellow) or entire uterus (red) included in the planning target volume (PTV). a and c red contour = entire uterus included in the PTV; yellow contour = only the parts of the uterus closer than two cm of the gross tumor volume (GTV = red flooded contour) are included in the PTV. c and d DVHs of patient a and c respectively; the red DVHs correspond with the red contour (whole uterus); the yellow DVHs correspond with the yellow contour (selected parts of the uterus included in the CTV). The tail towards 62Gy in the DVH of the PTV corresponds with the SIB given to the GTV. In the first patient (a) the uterus lies in anteflexed position causing high doses to the bladder when irradiated entirely. A small reduction of PTV by reducing the amount of uterus included in the PTV causes a huge reduction in dose delivered to the bladder (b). A reduction of the PTV in case of a normal positioned uterus causes mainly a reduction in the irradiated volume of small bowel (d). Due to the large amounts of small bowel delineated, the reduction in terms of percentage seems small. However, in this case the amount of small bowel receiving 45Gy is reduced with 8%, which corresponds with 59 cc

References

    1. Potter R, Georg P, Dimopoulos JC, Grimm M, Berger D, Nesvacil N, Georg D, Schmid MP, Reinthaller A, Sturdza A, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–123. doi: 10.1016/j.radonc.2011.07.012.
    1. Charra-Brunaud C, Harter V, Delannes M, Haie-Meder C, Quetin P, Kerr C, Castelain B, Thomas L, Peiffert D. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103(3):305–313. doi: 10.1016/j.radonc.2012.04.007.
    1. Potter R, Tanderup K, Kirisits C, de Leeuw A, Kirchheiner K, Nout R, Tan LT, Haie-Meder C, Mahantshetty U, Segedin B, et al. The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018;9:48–60. doi: 10.1016/j.ctro.2018.01.001.
    1. Kirwan JM, Symonds P, Green JA, Tierney J, Collingwood M, Williams CJ. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol. 2003;68(3):217–226. doi: 10.1016/S0167-8140(03)00197-X.
    1. Cibula D, Abu-Rustum NR, Benedetti-Panici P, Kohler C, Raspagliesi F, Querleu D, Morrow CP. New classification system of radical hysterectomy: emphasis on a three-dimensional anatomic template for parametrial resection. Gynecol Oncol. 2011;122(2):264–268. doi: 10.1016/j.ygyno.2011.04.029.
    1. Tummers P, Makar A, Vandecasteele K, De Meerleer G, Denys H, De Visschere P, Delrue L, Villeirs G, Lambein K, den Broecke RV. Completion surgery after intensity-modulated arc therapy in the treatment of locally advanced cervical cancer: feasibility, surgical outcome, and oncologic results. Int J Gynecol Cancer. 2013;23(5):877–883. doi: 10.1097/IGC.0b013e31828d1ec0.
    1. Vandecasteele K, Makar A, Van den Broecke R, Delrue L, Denys H, Lambein K, Lambert B, van Eijkeren M, Tummers P, De Meerleer G. Intensity-modulated arc therapy with cisplatin as neo-adjuvant treatment for primary irresectable cervical cancer. Toxicity, tumour response and outcome. Strahlenther Onkol. 2012;188(7):576–581. doi: 10.1007/s00066-012-0097-0.
    1. Vandecasteele K, De Neve W, De Gersem W, Delrue L, Paelinck L, Makar A, Fonteyne V, De Wagter C, Villeirs G, De Meerleer G. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation. Strahlenther Onkol. 2009;185(12):799–807. doi: 10.1007/s00066-009-1986-8.
    1. Guerrero M, Li XA, Ma L, Linder J, Deyoung C, Erickson B. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: radiobiological and dosimetric considerations. Int J Radiat Oncol Biol Phys. 2005;62(3):933–939. doi: 10.1016/j.ijrobp.2004.11.040.
    1. Huh SJ, Park W, Han Y. Interfractional variation in position of the uterus during radical radiotherapy for cervical cancer. Radiother Oncol. 2004;71(1):73–79. doi: 10.1016/j.radonc.2004.01.005.
    1. Jadon R, Pembroke CA, Hanna CL, Palaniappan N, Evans M, Cleves AE, Staffurth J. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol. 2014;26(4):185–196. doi: 10.1016/j.clon.2013.11.031.
    1. Lim K, Small W, Jr, Portelance L, Creutzberg C, Jürgenliemk-Schulz IM, Mundt A, Mell LK, Mayr N, Viswanathan A, Jhingran A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix Cancer. Int J Radiat Oncol Biol Phys. 2009;79(2):348–355. doi: 10.1016/j.ijrobp.2009.10.075.
    1. de Boer P, Adam JA, Buist MR, van de Vijver MJ, Rasch CR, Stoker J, Bipat S, Stalpers LJ: Role of MRI in detecting involvement of the uterine internal os in uterine cervical cancer: systematic review of diagnostic test accuracy. Eur J Radiol 2013, 82(9):e422–e428.
    1. Kusmirek J, Robbins J, Allen H, Barroilhet L, Anderson B, Sadowski EA. PET/CT and MRI in the imaging assessment of cervical cancer. Abdominal imaging. 2015;40(7):2486–2511. doi: 10.1007/s00261-015-0363-6.
    1. Ahamad A, D'Souza W, Salehpour M, Iyer R, Tucker SL, Jhingran A, Eifel PJ. Intensity-modulated radiation therapy after hysterectomy: comparison with conventional treatment and sensitivity of the normal-tissue-sparing effect to margin size. Int J Radiat Oncol Biol Phys. 2005;62(4):1117–1124. doi: 10.1016/j.ijrobp.2004.12.029.
    1. van de Schoot AJ, de Boer P, Buist MR, Stoker J, Bleeker MC, Stalpers LJ, Rasch CR, Bel A. Quantification of delineation errors of the gross tumor volume on magnetic resonance imaging in uterine cervical cancer using pathology data and deformation correction. Acta Oncol. 2015;54(2):224–231. doi: 10.3109/0284186X.2014.983655.
    1. Vandecasteele K, Tummers P, Makar A, van Eijkeren M, Delrue L, Denys H, Lambert B, Beerens AS, Van den Broecke R, Lambein K, et al. Postoperative intensity-modulated arc therapy for cervical and endometrial cancer: a prospective report on toxicity. Int J Radiat Oncol Biol Phys. 2012;84(2):408–414. doi: 10.1016/j.ijrobp.2011.12.020.
    1. Thoeny Harriet C., Forstner Rosemarie, De Keyzer Frederik. Genitourinary Applications of Diffusion-weighted MR Imaging in the Pelvis. Radiology. 2012;263(2):326–342. doi: 10.1148/radiol.12110446.
    1. Harry VN, Semple SI, Gilbert FJ, Parkin DE. Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol. 2008;111(2):213–220. doi: 10.1016/j.ygyno.2008.07.048.
    1. Somoye G, Harry V, Semple S, Plataniotis G, Scott N, Gilbert FJ, Parkin D. Early diffusion weighted magnetic resonance imaging can predict survival in women with locally advanced cancer of the cervix treated with combined chemo-radiation. Eur Radiol. 2012;22(11):2319–2327. doi: 10.1007/s00330-012-2496-0.
    1. Gandhi AK, Sharma DN, Rath GK, Julka PK, Subramani V, Sharma S, Manigandan D, Laviraj MA, Kumar S, Thulkar S. Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study. Int J Radiat Oncol Biol Phys. 2013;87(3):542–548. doi: 10.1016/j.ijrobp.2013.06.2059.
    1. Hasselle MD, Rose BS, Kochanski JD, Nath SK, Bafana R, Yashar CM, Hasan Y, Roeske JC, Mundt AJ, Mell LK. Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2011;80(5):1436–1445. doi: 10.1016/j.ijrobp.2010.04.041.
    1. Mell LK, Tiryaki H, Ahn KH, Mundt AJ, Roeske JC, Aydogan B. Dosimetric comparison of bone marrow-sparing intensity-modulated radiotherapy versus conventional techniques for treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(5):1504–1510. doi: 10.1016/j.ijrobp.2008.04.046.
    1. Portelance L, Chao KS, Grigsby PW, Bennet H, Low D. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and Para-aortic irradiation. Int J Radiat Oncol Biol Phys. 2001;51(1):261–266. doi: 10.1016/S0360-3016(01)01664-9.
    1. Sturdza A, Potter R, Fokdal LU, Haie-Meder C, Tan LT, Mazeron R, Petric P, Segedin B, Jurgenliemk-Schulz IM, Nomden C, et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120(3):428–433. doi: 10.1016/j.radonc.2016.03.011.
    1. Lim K, Small W, Jr, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, Mell LK, Mayr N, Viswanathan A, Jhingran A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–355. doi: 10.1016/j.ijrobp.2009.10.075.
    1. Schreuder SM, Lensing R, Stoker J, Bipat S. Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: a systematic review. J Magn Reson Imaging. 2015;42(3):572–594. doi: 10.1002/jmri.24784.
    1. Dappa E, Elger T, Hasenburg A, Duber C, Battista MJ, Hotker AM. The value of advanced MRI techniques in the assessment of cervical cancer: a review. Insights Imaging. 2017;8(5):471–481. doi: 10.1007/s13244-017-0567-0.
    1. Classe JM, Rauch P, Rodier JF, Morice P, Stoeckle E, Lasry S, Houvenaeghel G. Groupe des Chirurgiens de Centre de Lutte Contre le C: surgery after concurrent chemoradiotherapy and brachytherapy for the treatment of advanced cervical cancer: morbidity and outcome: results of a multicenter study of the GCCLCC (Groupe des Chirurgiens de Centre de Lutte Contre le Cancer) Gynecol Oncol. 2006;102(3):523–529. doi: 10.1016/j.ygyno.2006.01.022.
    1. Lyng H, Vorren AO, Sundfor K, Taksdal I, Lien HH, Kaalhus O, Rofstad EK. Intra- and intertumor heterogeneity in blood perfusion of human cervical cancer before treatment and after radiotherapy. Int J Cancer. 2001;96(3):182–190. doi: 10.1002/ijc.1019.
    1. Barwick TD, Taylor A, Rockall A. Functional imaging to predict tumor response in locally advanced cervical cancer. Curr Oncol Rep. 2013;15(6):549–558. doi: 10.1007/s11912-013-0344-2.
    1. Fu ZZ, Peng Y, Cao LY, Chen YS, Li K, Fu BH. Value of apparent diffusion coefficient (ADC) in assessing radiotherapy and chemotherapy success in cervical cancer. Magn Reson Imaging. 2015;33(5):516–524. doi: 10.1016/j.mri.2015.02.002.
    1. Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y. Diffusion-weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clin Radiol. 2009;64(11):1067–1074. doi: 10.1016/j.crad.2009.07.010.
    1. Zhang Y, Chen JY, Xie CM, Mo YX, Liu XW, Liu Y, Wu PH. Diffusion-weighted magnetic resonance imaging for prediction of response of advanced cervical cancer to chemoradiation. J Comput Assist Tomogr. 2011;35(1):102–107. doi: 10.1097/RCT.0b013e3181f6528b.
    1. Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, et al. Diffusion-weighted magnetic resonance imaging as a Cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–125. doi: 10.1593/neo.81328.
    1. Liu Y, Sun H, Bai R, Ye Z. Time-window of early detection of response to concurrent chemoradiation in cervical cancer by using diffusion-weighted MR imaging: a pilot study. Radiat Oncol. 2015;10:185. doi: 10.1186/s13014-015-0493-6.
    1. Kundu S, Chopra S, Verma A, Mahantshetty U, Engineer R, Shrivastava SK. Functional magnetic resonance imaging in cervical cancer: current evidence and future directions. J Cancer Res Ther. 2012;8(1):11–18. doi: 10.4103/0973-1482.95167.

Source: PubMed

3
Subscribe