Effects of a Short Daytime Nap on the Cognitive Performance: A Systematic Review and Meta-Analysis

Frédéric Dutheil, Benjamin Danini, Reza Bagheri, Maria Livia Fantini, Bruno Pereira, Farès Moustafa, Marion Trousselard, Valentin Navel, Frédéric Dutheil, Benjamin Danini, Reza Bagheri, Maria Livia Fantini, Bruno Pereira, Farès Moustafa, Marion Trousselard, Valentin Navel

Abstract

Background: Napping in the workplace is under debate, with interesting results on work efficiency and well-being of workers. In this systematic review and meta-analysis, we aimed to assess the benefits of a short daytime nap on cognitive performance.

Methods: PubMed, Cochrane Library, ScienceDirect and PsycInfo databases were searched until 19 August 2021. Cognitive performance in working-aged adults, both before and following a daytime nap or under control conditions (no nap), was analysed by time and by type of cognitive function (alertness, executive function and memory).

Results: We included 11 studies (all in laboratory conditions including one with a subgroup in working conditions) for a total of 381 participants. Mean duration of nap was 55.4 ± 29.4 min. Overall cognitive performance did not differ at baseline (t0) between groups (effect size -0.03, 95% CI -0.14 to 0.07), and improved in the nap group following the nap (t1) (0.18, 0.09 to 0.27), especially for alertness (0.29, 0.10 to 0.48). Sensitivity analyses gave similar results comparing only randomized controlled trials, and after exclusion of outliers. Whatever the model used, performance mainly improved until 120 min after nap, with conflicting results during the sleep inertia period. Early naps in the afternoon (before 1.00 p.m.) gave better cognitive performance (0.24, -0.07 to 0.34). The benefits of napping were independent of sex and age. Duration of nap and time between nap and t1 did not influence cognitive performance.

Conclusions: Despite the fact that our meta-analyses included almost exclusively laboratory studies, daytime napping in the afternoon improved cognitive performance with beneficial effects of early nap. More studies in real work condition are warranted before implementing daytime napping at work as a preventive measure to improve work efficiency.

Keywords: cognitive performance; daytime nap; prevention; work.

Conflict of interest statement

No conflicting relationship exists for any author.

Figures

Figure 1
Figure 1
Search strategy.
Figure 2
Figure 2
Methodological quality of included articles and summary bias risk. Using the “Scottish Intercollegiate Guidelines Network” (SIGN) Methodology checklist 2 Yes: +; No: − Can’t say: ?; Not applicable: NA; RCT: Randomized controlled trials; * item only for randomized studies.
Figure 3
Figure 3
Summary of meta-analysis on cognitive performance between groups (nap vs. control), for each cognitive function: before (left), after (middle) exclusion of studies not evenly distributed around the funnel plot and (right) non-randomised controlled trials. For details of the meta-analysis at each analysis time, please see Figure S3 for meta-analyses t1. For details of the meta-analysis on each cognitive function, please see Figure S1 for meta-analyses at t0, and Figure 4 for t1. For details of the meta-analysis on each group, please see Figure 4 and Figure S4 for the nap group, Figure 5 for the control group. t0: baseline; t1: after intervention (nap or no-nap). Each overall summary of a meta-analysis is represented in the graph by a dot on a vertical line. The black dots represent the overall pooled-effect estimate of individual meta-analyses (pooled effect size—ES), and the length of each vertical line around the dots represents their 95% confidence interval (95CI). Shorter lines represent a narrower 95CI thus higher precision around pooled-ES. Conversely, longer lines represent a wider 95CI and less precision around pooled-ES. The black solid horizontal line represents the null estimate (with a value of 0 for pooled-ES). Vertical lines that cross the null horizontal line represent a non-significant overall summary of the meta-analysis at each time analysed (t0 and t1).
Figure 4
Figure 4
Summary of meta-analyses on cognitive performance stratified on type of cognitive function and on time of analysis at t1 between groups. Each summary of meta-analysis is presented in three conditions: global model with all the studies, after exclusion of outliers (studies not evenly distributed around the funnel plot) and with only randomized controlled trials. Each summary of several meta-analyses is represented in the forest plot by a dot on a horizontal line. The black dots represent the pooled-effect estimate (pooled effect size—ES), and the length of each line around the dots represents their 95% confidence interval (95CI). Shorter lines represent a narrower 95CI thus higher precision around pooled-ES. Conversely, longer lines represent a wider 95CI and less precision around pooled-ES. An overall summary of the results of the meta-analyses pooled-estimate (result of the overall meta-analysis) is represented by a blue lozenge at the end of the graph. The black solid vertical line represents the null estimate (with a value of 0 for pooled-ES). Horizontal lines that cross the null vertical line represent the non-significant overall summary of the meta-analysis. Bold numbers represent the overall result of each meta-analysis.
Figure 5
Figure 5
Summary of sensitivity analysis: meta-analyses on cognitive performance at t1 compared with baseline (t0) within the nap group (left), meta-analyses on cognitive performance at t1 compared with baseline (t0) within the control group (middle), meta-analyses on changes in performance between t1 and t0 ((t1 − t0)/t0) between nap and control groups (right) Each summary of meta-analysis is presented in three conditions: global model with all the studies, after exclusion of outliers (studies not evenly distributed around the funnel plot) and with only randomized controlled trials For details of each meta-analysis, please see Figures S4, S6 and S7. Each summary of several meta-analyses is represented in the forest-plot by a dot on a horizontal line. The black dots represent the pooled-effect estimate (pooled effect size—ES), and the length of each line around the dots represents their 95% confidence interval (95CI). Shorter lines represent a narrower 95CI thus higher precision around pooled-ES. Conversely, longer lines represent a wider 95CI and less precision around pooled-ES. An overall summary of the results of the meta-analyses pooled-estimate (result of the overall meta-analysis) is represented by a blue lozenge at the end of the graph. The black solid vertical line represents the null estimate (with a value of 0 for pooled-ES). Horizontal lines that cross the null vertical line represent the non-significant overall summary of the meta-analysis.
Figure 6
Figure 6
Summary of meta-regressions: 95%CI: 95% confidence intervals; t0: baseline; t1: after nap (nap group) or rest without nap (control group) Results were presented before (left) and after (right) exclusion of non-randomized controlled trials The effect of each variable on the outcome is represented in the forest-plot by a dot on a horizontal line. The black dots represent the coefficient for each variable, and the length of each line around the dots represents their 95% confidence interval (95CI). The black solid vertical line represents the null estimate (with a value of 0). Horizontal lines that cross the null vertical line represent non-significant variables on the outcome. Bold numbers represent the significant results (p < 0.05).

References

    1. Edenred . Comprendre et Améliorer le Bien-Être au Travail. Edenred; Malakoff, France: 2016. Baromètre Edenred-Ipsos 2016.
    1. Organisation de Coopération et de Développement Economiques Level of GDP per Capita and Productivity. [(accessed on 18 February 2020)]. Available online: .
    1. Kessler R.C., Berglund P.A., Coulouvrat C., Hajak G., Roth T., Shahly V., Shillington A.C., Stephenson J.J., Walsh J.K. Insomnia and the Performance of US Workers: Results from the America Insomnia Survey. Sleep. 2011;34:1161–1171. doi: 10.5665/SLEEP.1230.
    1. Webb W., Dinges D. Sleep and Alertness: Chronobiological, Behavioral and Medical Aspects of Napping. Raven Press; New York, NY, USA: 1989. Cultural perspectives on napping and the siesta; pp. 247–265.
    1. Mullens E. Apprendre à Faire la Sieste: Et si C’était un Médicament. 2nd ed. Trédaniel; Paris, France: 2011.
    1. Lau H., Tucker M.A., Fishbein W. Daytime Napping: Effects on Human Direct Associative and Relational Memory. Neurobiol. Learn Mem. 2010;93:554–560. doi: 10.1016/j.nlm.2010.02.003.
    1. Comby B. Eloge de la Sieste. J’ai lu; Paris, France: 2005. Préface de Jacques Chirac.
    1. Faraut B., Andrillon T., Vecchierini M.-F., Leger D. Napping: A Public Health Issue. From Epidemiological to Laboratory Studies. Sleep Med. Rev. 2017;35:85–100. doi: 10.1016/j.smrv.2016.09.002.
    1. Maury J.-P. République Populaire Chine, Constitution Chinoise. 1982. [(accessed on 23 October 2019)]. Available online: .
    1. Williams N.J., Grandne M.A., Snipes A., Rogers A., Williams O., Airhihenbuwa C., Jean-Louis G. Racial/Ethnic Disparities in Sleep Health and Health Care: Importance of the Sociocultural Context. Sleep Health. 2015;1:28–35. doi: 10.1016/j.sleh.2014.12.004.
    1. Rosekind M.R., Smith R.M., Miller D.L., Co E.L., Gregory K.B., Webbon L.L., Gander P.H., Lebacqz J.V. Alertness Management: Strategic Naps in Operational Settings. J. Sleep Res. 1995;4:62–66. doi: 10.1111/j.1365-2869.1995.tb00229.x.
    1. Mednick S., Ehrman M. Take Nap! Change Your Life. Workman Publishing; New York, NY, USA: 2006.
    1. Lahl O., Wispel C., Willigens B., Pietrowsky R. An Ultra Short Episode of Sleep Is Sufficient to Promote Declarative Memory Performance. J. Sleep Res. 2008;17:3–10. doi: 10.1111/j.1365-2869.2008.00622.x.
    1. Igloi K., Gaggioni G., Sterpenich V., Schwartz S. A Nap to Recap or How Reward Regulates Hippocampal-Prefrontal Memory Networks during Daytime Sleep in Humans. Elife. 2015;4:e07093. doi: 10.7554/eLife.07903.
    1. Bonnet M.H. The Effect of Varying Prophylactic Naps on Performance, Alertness and Mood throughout a 52-Hour Continuous Operation. Sleep. 1991;14:307–315. doi: 10.1093/sleep/14.4.307.
    1. Dutheil F., Bessonnat B., Pereira B., Baker J.S., Moustafa F., Fantini M.L., Mermillod M., Navel V. Napping and Cognitive Performance during Night Shifts: A Systematic Review and Meta-Analysis. Sleep. 2020;43:zsaa109. doi: 10.1093/sleep/zsaa109.
    1. Kubo T., Takeyama H., Matsumoto S., Ebara T., Murata K., Tachi N., Itani T. Impact of Nap Length, Nap Timing and Sleep Quality on Sustaining Early Morning Performance. Ind. Health. 2007;45:552–563. doi: 10.2486/indhealth.45.552.
    1. Tietzel A.J., Lack L.C. The Short-Term Benefits of Brief and Long Naps Following Nocturnal Sleep Restriction. Sleep. 2001;24:293–300. doi: 10.1093/sleep/24.3.293.
    1. Lovato N., Lack L. The effects of napping on cognitive functioning. In: Kerkhof G.A., van Dongen H.P.A., editors. Progress in Brain Research. Volume 185. Elsevier; Amsterdam, The Netherlands: 2010. pp. 155–166.
    1. Huffington A. The Sleep Revolution: Transforming Your Life, One Night at a Time. Harmony Hill; New York, NY, USA: 2017.
    1. Travers J. Would You Like to Use a Sleep Pod at Work? [(accessed on 23 October 2019)]. Available online: .
    1. La Siestoune Jacques. [(accessed on 18 February 2020)]. Available online: .
    1. Moher D., Hopewell S., Schulz K.F., Montori V., Gøtzsche P.C., Devereaux P.J., Elbourne D., Egger M., Altman D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Vandenbroucke J.P., von Elm E., Altman D.G., Gøtzsche P.C., Mulrow C.D., Pocock S.J., Poole C., Schlesselman J.J., Egger M. STROBE Initiative Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Int. J. Surg. 2014;12:1500–1524. doi: 10.1016/j.ijsu.2014.07.014.
    1. Scottish Intercollegiate Guidelines Network (SIGN) Critical Appraisal Notes and Checklists. [(accessed on 23 October 2019)]. Available online: .
    1. Benoist d’Azy C., Pereira B., Chiambaretta F., Dutheil F. Efficacy of Different Procedures of Intra-Corneal Ring Segment Implantation in Keratoconus: A Systematic Review and Meta-Analysis. Transl. Vis. Sci. Technol. 2019;8:38. doi: 10.1167/tvst.8.3.38.
    1. Benoist d’Azy C., Pereira B., Naughton G., Chiambaretta F., Dutheil F. Antibioprophylaxis in Prevention of Endophthalmitis in Intravitreal Injection: A Systematic Review and Meta-Analysis. PLoS ONE. 2016;11:e0156431. doi: 10.1371/journal.pone.0156431.
    1. Benoist d’Azy C., Pereira B., Chiambaretta F., Dutheil F. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis. PLoS ONE. 2016;11:e0166915. doi: 10.1371/journal.pone.0166915.
    1. Courtin R., Pereira B., Naughton G., Chamoux A., Chiambaretta F., Lanhers C., Dutheil F. Prevalence of Dry Eye Disease in Visual Display Terminal Workers: A Systematic Review and Meta-Analysis. BMJ Open. 2016;6:e009675. doi: 10.1136/bmjopen-2015-009675.
    1. Lanhers C., Pereira B., Naughton G., Trousselard M., Lesage F.-X., Dutheil F. Creatine Supplementation and Lower Limb Strength Performance: A Systematic Review and Meta-Analyses. Sports Med. 2015;45:1285–1294. doi: 10.1007/s40279-015-0337-4.
    1. Lanhers C., Pereira B., Naughton G., Trousselard M., Lesage F.-X., Dutheil F. Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017;47:163–173. doi: 10.1007/s40279-016-0571-4.
    1. Navel V., Mulliez A., Benoist d’Azy C., Baker J.S., Malecaze J., Chiambaretta F., Dutheil F. Efficacy of Treatments for Demodex Blepharitis: A Systematic Review and Meta-Analysis. Ocul. Surf. 2019;17:655–669. doi: 10.1016/j.jtos.2019.06.004.
    1. Ollier M., Chamoux A., Naughton G., Pereira B., Dutheil F. Chest CT Scan Screening for Lung Cancer in Asbestos Occupational Exposure: A Systematic Review and Meta-Analysis. Chest. 2014;145:1339–1346. doi: 10.1378/chest.13-2181.
    1. DerSimonian R., Laird N. Meta-Analysis in Clinical Trials. Control Clin. Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. Russo M.W. How to Review a Meta-Analysis. Gastroenterol. Hepatol. 2007;3:637–642.
    1. Christy A., Divya M., Saravanan A., Vadivel S., Jaiganesh K. A Study on the Impact of Daytime Nap on Declarative Memory in Young Adults. Asian J. Pharm. Clin. Res. 2015;1:161–163.
    1. Hayashi M., Watanabe M., Hori T. The Effects of a 20 Min Nap in the Mid-Afternoon on Mood, Performance and EEG Activity. Clin. Neurophysiol. 1999;110:272–279. doi: 10.1016/S1388-2457(98)00003-0.
    1. Hayashi M., Ito S., Hori T. The Effects of a 20-Min Nap at Noon on Sleepiness, Performance and EEG Activity. Int. J. Psychophysiol. 1999;32:173–180. doi: 10.1016/S0167-8760(99)00009-4.
    1. Abdessalem R., Boukhris O., Hsouna H., Trabelsi K., Ammar A., Taheri M., Irandoust K., Hill D.W., Chtourou H. Effect of Napping Opportunity at Different Times of Day on Vigilance and Shuttle Run Performance. Chronobiol. Int. 2019;36:1334–1342. doi: 10.1080/07420528.2019.1642908.
    1. Lau H., Alger S.E., Fishbein W. Relational Memory: A Daytime Nap Facilitates the Abstraction of General Concepts. PLoS ONE. 2011;6:e27139. doi: 10.1371/journal.pone.0027139.
    1. Amin M.M., Graber M., Ahmad K., Manta D., Hossain S., Belisova Z., Cheney W., Gold M.S., Gold A.R. The Effects of a Mid-Day Nap on the Neurocognitive Performance of First-Year Medical Residents: A Controlled Interventional Pilot Study. Acad. Med. 2012;87:1428–1433. doi: 10.1097/ACM.0b013e3182676b37.
    1. Asaoka S., Masaki H., Ogawa K., Murphy T.I., Fukuda K., Yamazaki K. Performance Monitoring during Sleep Inertia after a 1-h Daytime Nap. J. Sleep Res. 2010;19:436–443. doi: 10.1111/j.1365-2869.2009.00811.x.
    1. Backhaus J., Junghanns K. Daytime Naps Improve Procedural Motor Memory. Sleep Med. 2006;7:508–512. doi: 10.1016/j.sleep.2006.04.002.
    1. Backhaus W., Braass H., Renné T., Gerloff C., Hummel F.C. Motor Performance Is Not Enhanced by Daytime Naps in Older Adults. Front. Aging Neurosci. 2016;8:125. doi: 10.3389/fnagi.2016.00125.
    1. Debarnot U., Castellani E., Valenza G., Sebastiani L., Guillot A. Daytime Naps Improve Motor Imagery Learning. Cogn. Affect. Behav. Neurosci. 2011;11:541–550. doi: 10.3758/s13415-011-0052-z.
    1. Milner C.E., Fogel S.M., Cote K.A. Habitual Napping Moderates Motor Performance Improvements Following a Short Daytime Nap. Biol. Psychol. 2006;73:141–156. doi: 10.1016/j.biopsycho.2006.01.015.
    1. Takahashi M., Nakata A., Haratani T., Ogawa Y., Arito H. Post-Lunch Nap as a Worksite Intervention to Promote Alertness on the Job. Ergonomics. 2004;47:1003–1013. doi: 10.1080/00140130410001686320.
    1. Tucker M.A., Hirota Y., Wamsley E.J., Lau H., Chaklader A., Fishbein W. A Daytime Nap Containing Solely Non-REM Sleep Enhances Declarative but Not Procedural Memory. Neurobiol. Learn Mem. 2006;86:241–247. doi: 10.1016/j.nlm.2006.03.005.
    1. Tucker M.A., Fishbein W. Enhancement of Declarative Memory Performance Following a Daytime Nap Is Contingent on Strength of Initial Task Acquisition. Sleep. 2008;31:197–203. doi: 10.1093/sleep/31.2.197.
    1. Van Schalkwijk F.J., Sauter C., Hoedlmoser K., Heib D.P.J., Klösch G., Moser D., Gruber G., Anderer P., Zeitlhofer J., Schabus M. The Effect of Daytime Napping and Full-Night Sleep on the Consolidation of Declarative and Procedural Information. J. Sleep Res. 2019;28:e12649. doi: 10.1111/jsr.12649.
    1. Dinges D. Sleep and Alertness: Chronobiological, Behavioural, and Medical Aspects of Napping. Raven Press; New York, NY, USA: 1989. Napping patterns and effects in human adults; pp. 171–204.
    1. Broughton R., Dinges D. Sleep and Alertness: Chronobiological, Behavioural, and Medical Aspects of Napping. Raven Press; New York, NY, USA: 1989. Napping: A ubiquitous enigma; pp. 1–7.
    1. Horne J.A., Reyner L.A. Counteracting Driver Sleepiness: Effects of Napping, Caffeine, and Placebo. Psychophysiology. 1996;33:306–309. doi: 10.1111/j.1469-8986.1996.tb00428.x.
    1. Taub J.M., Tanguay P.E., Rosa R.R. Effects of Afternoon Naps on Physiological Variables Performance and Self-Reported Activation. Biol. Psychol. 1977;5:191–210. doi: 10.1016/0301-0511(77)90002-3.
    1. Milner C.E., Cote K.A. Benefits of Napping in Healthy Adults: Impact of Nap Length, Time of Day, Age, and Experience with Napping. J. Sleep Res. 2009;18:272–281. doi: 10.1111/j.1365-2869.2008.00718.x.
    1. Cajochen C., Knoblauch V., Wirz-Justice A., Kräuchi K., Graw P., Wallach D. Circadian Modulation of Sequence Learning under High and Low Sleep Pressure Conditions. Behav. Brain Res. 2004;151:167–176. doi: 10.1016/j.bbr.2003.08.013.
    1. Ficca G., Axelsson J., Mollicone D.J., Muto V., Vitiello M.V. Naps, Cognition and Performance. Sleep Med. Rev. 2010;14:249–258. doi: 10.1016/j.smrv.2009.09.005.
    1. Sugawara S.K., Koike T., Kawamichi H., Makita K., Hamano Y.H., Takahashi H.K., Nakagawa E., Sadato N. Qualitative Differences in Offline Improvement of Procedural Memory by Daytime Napping and Overnight Sleep: An FMRI Study. Neurosci. Res. 2018;132:37–45. doi: 10.1016/j.neures.2017.09.006.
    1. Cai D.J., Mednick S.A., Harrison E.M., Kanady J.C., Mednick S.C. REM, Not Incubation, Improves Creativity by Priming Associative Networks. Proc. Natl. Acad. Sci. USA. 2009;106:10130–10134. doi: 10.1073/pnas.0900271106.
    1. Whitehurst L.N., Cellini N., McDevitt E.A., Duggan K.A., Mednick S.C. Autonomic Activity during Sleep Predicts Memory Consolidation in Humans. Proc. Natl. Acad. Sci. USA. 2016;113:7272–7277. doi: 10.1073/pnas.1518202113.
    1. Baxter V., Kroll-Smith S. Normalizing the Workplace Nap: Blurring the Boundaries between Public and Private Space and Time. Curr. Sociol. 2005;53:33–55. doi: 10.1177/0011392105048287.
    1. Boukhris O., Abdessalem R., Ammar A., Hsouna H., Trabelsi K., Engel F.A., Sperlich B., Hill D.W., Chtourou H. Nap Opportunity During the Daytime Affects Performance and Perceived Exertion in 5-m Shuttle Run Test. Front. Physiol. 2019;10:779. doi: 10.3389/fphys.2019.00779.
    1. Macchi M.M., Boulos Z., Ranney T., Simmons L., Campbell S.S. Effects of an Afternoon Nap on Nighttime Alertness and Performance in Long-Haul Drivers. Accid. Anal. Prev. 2002;34:825–834. doi: 10.1016/S0001-4575(01)00089-6.
    1. Purnell M.T., Feyer A.-M., Herbison G.P. The Impact of a Nap Opportunity during the Night Shift on the Performance and Alertness of 12-h Shift Workers. J. Sleep Res. 2002;11:219–227. doi: 10.1046/j.1365-2869.2002.00309.x.
    1. Takahashi M., Arito H. Maintenance of Alertness and Performance by a Brief Nap after Lunch under Prior Sleep Deficit. Sleep. 2000;23:813–819. doi: 10.1093/sleep/23.6.1h.
    1. Brindle R.C., Conklin S.M. Daytime Sleep Accelerates Cardiovascular Recovery after Psychological Stress. Int. J. Behav. Med. 2012;19:111–114. doi: 10.1007/s12529-011-9150-0.
    1. Naska A., Oikonomou E., Trichopoulou A., Psaltopoulou T., Trichopoulos D. Siesta in Healthy Adults and Coronary Mortality in the General Population. Arch. Intern. Med. 2007;167:296–301. doi: 10.1001/archinte.167.3.296.
    1. Brooks A., Lack L. A Brief Afternoon Nap Following Nocturnal Sleep Restriction: Which Nap Duration Is Most Recuperative? Sleep. 2006;29:831–840. doi: 10.1093/sleep/29.6.831.
    1. Tietzel A.J., Lack L.C. The Recuperative Value of Brief and Ultra-Brief Naps on Alertness and Cognitive Performance. J. Sleep Res. 2002;11:213–218. doi: 10.1046/j.1365-2869.2002.00299.x.
    1. Dinges D. Encyclopedia of Sleep and Dreaming. Greenwood; Toronto, ON, Canada: 1993. Sleep inertia; pp. 553–554.
    1. Hilditch C.J., Dorrian J., Banks S. A Review of Short Naps and Sleep Inertia: Do Naps of 30 Min or Less Really Avoid Sleep Inertia and Slow-Wave Sleep? Sleep Med. 2017;32:176–190. doi: 10.1016/j.sleep.2016.12.016.
    1. Tassi P., Muzet A. Sleep Inertia. Sleep Med. Rev. 2000;4:341–353. doi: 10.1053/smrv.2000.0098.
    1. Ogilvie R., Broughton R. Sleep, Arousal and Performance: Problems and Promises. Birkhauser; Boston, MA, USA: 1991.
    1. Dinges D., Orne M., Orne E. Sleep Depth and Other Factors Associated with Performance upon Abrupt Awakening. Sleep Res. 1985;14:92.
    1. Muzet A., Nicolas A., Tassi P., Dewasmes G., Bonneau A. Implementation of Napping in Industry and the Problem of Sleep Inertia. J. Sleep Res. 1995;4:67–69. doi: 10.1111/j.1365-2869.1995.tb00230.x.
    1. Scheer F., Shea T., Hilton M., Shea S. An Endogenous Circadian Rhythm in Sleep Inertia Results in Greatest Cognitive Impairment up on Awakening during the Biological Night. J. Biol. Rythms. 2008;23:353–361. doi: 10.1177/0748730408318081.
    1. Dinges D., Whitehouse W., Orne E., Orne M. The Benefits of a Nap during Prolonged Work and Wakefulness. Work Stress. 1988;2:139–153. doi: 10.1080/02678378808259158.
    1. Blackwell T., Yaffe K., Ancoli-Israel S., Schneider J.L., Cauley J.A., Hillier T.A., Fink H.A., Stone K.L. Study of Osteoporotic Fractures Group Poor Sleep Is Associated with Impaired Cognitive Function in Older Women: The Study of Osteoporotic Fractures. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:405–410. doi: 10.1093/gerona/61.4.405.
    1. McCrae C.S., Rowe M.A., Dautovich N.D., Lichstein K.L., Durrence H.H., Riedel B.W., Taylor D.J., Bush A.J. Sleep Hygiene Practices in Two Community Dwelling Samples of Older Adults. Sleep. 2006;29:1551–1560. doi: 10.1093/sleep/29.12.1551.
    1. Stone K.L., Ewing S.K., Lui L.-Y., Ensrud K.E., Ancoli-Israel S., Bauer D.C., Cauley J.A., Hillier T.A., Cummings S.R. Self-Reported Sleep and Nap Habits and Risk of Falls and Fractures in Older Women: The Study of Osteoporotic Fractures. J. Am. Geriatr. Soc. 2006;54:1177–1183. doi: 10.1111/j.1532-5415.2006.00818.x.
    1. Vitiello M., Foley D. Predictors of Planned and Unplanned Napping in Older Adults. Sleep. 2007;30:105–106.
    1. Liu X., Liu L. Sleep Habits and Insomnia in a Sample of Elderly Persons in China. Sleep. 2006;28:1579–1587. doi: 10.1093/sleep/28.12.1579.
    1. Brassington G.S., King A.C., Bliwise D.L. Sleep Problems as a Risk Factor for Falls in a Sample of Community-Dwelling Adults Aged 64-99 Years. J. Am. Geriatr. Soc. 2000;48:1234–1240. doi: 10.1111/j.1532-5415.2000.tb02596.x.
    1. Bursztyn M., Ginsberg G., Hammerman-Rozenberg R., Stessman J. The Siesta in the Elderly: Risk Factor for Mortality? Arch. Intern. Med. 1999;159:1582–1586. doi: 10.1001/archinte.159.14.1582.
    1. Newman A.B., Spiekerman C.F., Enright P., Lefkowitz D., Manolio T., Reynolds C.F., Robbins J. Daytime Sleepiness Predicts Mortality and Cardiovascular Disease in Older Adults. The Cardiovascular Health Study Research Group. J. Am. Geriatr. Soc. 2000;48:115–123. doi: 10.1111/j.1532-5415.2000.tb03901.x.
    1. Bursztyn M., Ginsberg G., Stessman J. The Siesta and Mortality in the Elderly: Effect of Rest without Sleep and Daytime Sleep Duration. Sleep. 2002;25:187–191. doi: 10.1093/sleep/25.2.187.
    1. Bursztyn M., Stessman J. The Siesta and Mortality: Twelve Years of Prospective Observations in 70-Year-Olds. Sleep. 2005;28:345–347.
    1. Naitoh P., Angus R. Sleep and Alertness: Chronobiological, Behavioral and Medical Aspects of Napping. Raven Press; New York, NY, USA: 1989. Napping and human functioning during prolonged work; pp. 221–246.
    1. Taub J., Hawkins D., van de Castle R. Temporal Relationships of Napping Behaviour to Performance, Mood States and Sleep Physiology. Sleep Res. 1978;7:164.
    1. Mullens E. Physiologie de La Somnolence. [(accessed on 23 October 2019)]. Available online: .
    1. Blake M.J.F. Time of Day Effects on Performance in a Range of Tasks. Psychon. Sci. 1967;9:349–350. doi: 10.3758/BF03327842.
    1. Broughton R. Sleep and Alertness: Chronobiological, Behavioral and Medical Aspects of Napping. Raven Press; New York, NY, USA: 1989. Chronobiological aspects and models of sleep and napping; pp. 71–98.
    1. Lavie P. Sleep and Alertness: Chronobiological, Behavioral, and Medical Aspects of Napping. Raven Press; New York, NY, USA: 1989. To nap, perchance to sleep-ultradian aspects Ž. of napping; pp. 99–120.
    1. Ohayon M.M., Zulley J. Prevalence of Naps in the General Population. Sleep Hypn. 1999;1:88–97.
    1. Buysse D.J., Browman K.E., Monk T.H., Reynolds C.F., Fasiczka A.L., Kupfer D.J. Napping and 24-Hour Sleep/Wake Patterns in Healthy Elderly and Young Adults. J. Am. Geriatr. Soc. 1992;40:779–786. doi: 10.1111/j.1532-5415.1992.tb01849.x.
    1. Foley D.J., Vitiello M.V., Bliwise D.L., Ancoli-Israel S., Monjan A.A., Walsh J.K. Frequent Napping Is Associated with Excessive Daytime Sleepiness, Depression, Pain, and Nocturia in Older Adults: Findings from the National Sleep Foundation “2003 Sleep in America” Poll. Am. J. Geriatr. Psychiatry. 2007;15:344–350. doi: 10.1097/01.JGP.0000249385.50101.67.
    1. Ohayon M.M. Epidemiology of Insomnia: What We Know and What We Still Need to Learn. Sleep Med. Rev. 2002;6:97–111. doi: 10.1053/smrv.2002.0186.
    1. Ohayon M.M., Carskadon M.A., Guilleminault C., Vitiello M.V. Meta-Analysis of Quantitative Sleep Parameters from Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values across the Human Lifespan. Sleep. 2004;27:1255–1273. doi: 10.1093/sleep/27.7.1255.
    1. Monk T.H. Aging Human Circadian Rhythms: Conventional Wisdom May Not Always Be Right. J. Biol. Rhythm. 2005;20:366–374. doi: 10.1177/0748730405277378.
    1. Wang B., Fu X. Gender Difference in the Effect of Daytime Sleep on Declarative Memory for Pictures. J. Zhejiang Univ. Sci. B. 2009;10:536–546. doi: 10.1631/jzus.B0820384.
    1. Van Dongen H.P.A. Sleep Deprivation, Stimulant Medications, and Cognition. Sleep. 2015;38:1145–1146. doi: 10.5665/sleep.4832.
    1. Stone D., Rosopa P. The Advantages and Limitations of Using Meta-Analysis in Human Resource Management Research. Hum. Resour. Manag. Rev. 2017;27:1–7. doi: 10.1016/j.hrmr.2016.09.001.
    1. Rosenthal R. Meta-Analytic Procedures for Social Research. Sage Publications, Inc.; Thousand Oaks, CA, USA: 1991.
    1. Cooper H., Hedges L.V. The Handbook of Research Synthesis. 2nd ed. Russell Sage Foundation; New York, NY, USA: 2008.
    1. Bobko P., Stone-Romero E. Meta-Analysis May Be another Useful Research Tool, but It Is Not a Panacea. Res. Pers. Hum. Resour. Manag. 1998;16:359–397.
    1. Sterne J., Harbord R. Funnel Plots in Meta-Analysis. Stata J. 2004;4:127–141. doi: 10.1177/1536867X0400400204.
    1. Patino C.M., Ferreira J.C. Internal and External Validity: Can You Apply Research Study Results to Your Patients? J. Bras. Pneumol. 2018;44:183. doi: 10.1590/s1806-37562018000000164.

Source: PubMed

3
Předplatit