Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms

Arsalan Alizadeh, Scott Matthew Dyck, Soheila Karimi-Abdolrezaee, Arsalan Alizadeh, Scott Matthew Dyck, Soheila Karimi-Abdolrezaee

Abstract

Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.

Keywords: animal models; cell death; chondroitin sulfate proteoglycans (CSPGs); clinical classifications and demography; glial and immune response; glial scar; secondary injury mechanisms; spinal cord injury.

Figures

Figure 1
Figure 1
ASIA scoring for the neurological classification of the SCI. A sample scoring sheet used for ASIA scoring in clinical setting is provided (adopted from: http://asia-spinalinjury.org).
Figure 2
Figure 2
Summary of secondary injury processes following traumatic spinal cord injury. Diagram shows the key pathophysiological events that occur after primary injury and lead to progressive tissue degeneration. Vascular disruption and ischemia occur immediately after primary injury that initiate glial activation, neuroinflammation, and oxidative stress. These acute changes results in cell death, axonal injury, matrix remodeling, and formation of a glial scar.
Figure 3
Figure 3
Pathophysiology of traumatic spinal cord injury. This schematic diagram illustrates the composition of normal and injured spinal cord. Of note, while these events are shown in one figure, some of the pathophysiological events may not temporally overlap and can occur at various phases of SCI, which are described here. Immediately after primary injury, activation of resident astrocytes and microglia and subsequent infiltration of blood-borne immune cells results in a robust neuroinflammatory response. This acute neuroinflammatory response plays a key role in orchestrating the secondary injury mechanisms in the sub-acute and chronic phases that lead to cell death and tissue degeneration, as well as formation of the glial scar, axonal degeneration and demyelination. During the acute phase, monocyte-derived macrophages occupy the epicenter of the injury to scavenge tissue debris. T and B lymphocytes also infiltrate the spinal cord during sub-acute phase and produce pro-inflammatory cytokines, chemokines, autoantibodies reactive oxygen and nitrogen species that contribute to tissue degeneration. On the other hand, M2-like macrophages and regulatory T and B cells produce growth factors and pro-regenerative cytokines such as IL-10 that foster tissue repair and wound healing. Loss of oligodendrocytes in acute and sub-acute stages of SCI leads to axonal demyelination followed by spontaneous remyelination in sub-acute and chronic phases. During the acute and sub-acute phases of SCI; astrocytes, OPCs and pericytes, which normally reside in the spinal cord parenchyma, proliferate and migrate to the site of injury and contribute to the formation of the glial scar. The glial scar and its associated matrix surround the injury epicenter and create a cellular and biochemical zone with both beneficial and detrimental roles in the repair process. Acutely, the astrocytic glial scar limits the spread of neuroinflammation from the lesion site to the healthy tissue. However, establishment of a mature longstanding glial scar and upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) are shown to inhibit axonal regeneration/sprouting and cell differentiation in subacute and chronic phases.
Figure 4
Figure 4
Immune response in spinal cord injury. Under normal circumstances, there is a balance between pro-inflammatory effects of CD4+ effector T cells (Teff) and anti-inflammatory effects of regulatory T and B cells (Treg and Breg). Treg and Breg suppress the activation of antigen specific CD4+ Teff cells through production of IL-10 and TGF-β. Injury disrupts this balance and promote a pro-inflammatory environment. Activated microglia/macrophages release pro-inflammatory cytokines and chemokines and present antigens to CD4+ T cells causing activation of antigen specific effector T cells. Teff cells stimulate antigen specific B cells to undergo clonal expansion and produce autoantibodies against spinal cord tissue antigens. These autoantibodies cause neurodegeneration through FcR mediated phagocytosis or complement mediated cytotoxicity. M1 macrophages/microglia release pro-inflammatory cytokines and reactive oxygen species (ROS) that are detrimental to neurons and oligodendrocytes. Breg cells possess the ability to promote Treg development and restrict Teff cell differentiation. Breg cells could also induce apoptosis in Teff cells through Fas mediate mechanisms.

References

    1. Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med. (2017) 40:665–75. 10.1080/10790268.2017.1329076
    1. WHO WHO | Spinal Cord Injury. WHO, Fact sheet N°384 (2013). Available online at:
    1. Stein DM, Pineda JA, Roddy VT, Knight WA. Emergency neurological life support: traumatic spine injury. Neurocrit Care. (2015) 23(Suppl. 2):S155–64. 10.1007/s12028-015-0169-y
    1. Wilson JR, Cadotte DW, Fehlings MG. Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: a systematic review. J Neurosurg Spine. (2012) 17(1 Suppl.):11–26. 10.3171/2012.4.AOSPINE1245
    1. Middleton JW, Dayton A, Walsh J, Rutkowski SB, Leong G, Duong S, et al. . Life expectancy after spinal cord injury: a 50-year study. Spinal Cord. (2012) 50:803–11. 10.1038/sc.2012.55
    1. Shavelle RM, Paculdo DR, Tran LM, Strauss DJ, Brooks JC, DeVivo MJ. Mobility, continence, and life expectancy in persons with Asia Impairment Scale Grade D spinal cord injuries. Am J Phys Med Rehabil. (2015) 94:180–91. 10.1097/PHM.0000000000000140
    1. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp. (2011) 71:281–99.
    1. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. . Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. (2001) 24:254–64. 10.1097/00002826-200109000-00002
    1. Sekhon L, Fehlings M. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. (2001) 26:S2–12. 10.1097/00007632-200112151-00002
    1. Tator C, Fehlings M. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. (1991) 75:15–26.
    1. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. (2008) 25:E2. 10.3171/FOC.2008.25.11.E2
    1. Choo AM, Liu J, Liu Z, Dvorak M, Tetzlaff W, Oxland TR. Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J Neurosci Methods. (2009) 181:6–17. 10.1016/j.jneumeth.2009.04.007
    1. Fehlings MG, Smith JS, Kopjar B, Arnold PM, Yoon ST, Vaccaro AR, et al. . Perioperative and delayed complications associated with the surgical treatment of cervical spondylotic myelopathy based on 302 patients from the AOSpine North America Cervical Spondylotic Myelopathy Study. J Neurosurg Spine. (2012) 16:425–32. 10.3171/2012.1.SPINE11467
    1. Szuflita NS, Neal CJ, Rosner MK, Frankowski RF, Grossman RG. Spine injuries sustained by U.S. military personnel in combat are different from non-combat spine injuries. Mil Med. (2016) 181:1314–23. 10.7205/MILMED-D-15-00332
    1. Blair JA, Patzkowski JC, Schoenfeld AJ, Cross Rivera JD, Grenier ES, Lehman RA, et al. . Are spine injuries sustained in battle truly different? Spine J. (2012) 12:824–9. 10.1016/j.spinee.2011.09.012
    1. Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma. (2014) 31:541–52. 10.1089/neu.2013.3034
    1. Fehlings MG, Sekhon LH. Restoration of spinal cord function. Am Academy of Orthopaedic Surgeons, Orthopaedic Knowledge Update: Spine 2(Chapter 49). (2002) 483–488.
    1. Fehlings MG, Vaccaro A, Wilson JR, Singh A,W, Cadotte D, Harrop JS, et al. . Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS ONE. (2012) 7:e32037. 10.1371/journal.pone.0032037
    1. Wilson JR, Tetreault LA, Kwon BK, Arnold PM, Mroz TE, Shaffrey C, et al. . Timing of decompression in patients with acute spinal cord injury: a systematic review. Global Spine J. (2017) 7(3 Suppl.):95S−115S. 10.1177/2192568217701716
    1. Michael Fehlings AR, Boakye M, Rossignol S, Ditunno JF, Jr, Anthony S. Burns Essentials of Spinal Cord Injury Basic Research to Clinical Practice. Denver, CO: Thieme Medical Publishers Inc. (2013).
    1. Wilson JR, Hashimoto RE, Dettori JR, Fehlings MG. Spinal cord injury and quality of life: a systematic review of outcome measures. Evid Based Spine Care J. (2011) 2:37–44. 10.1055/s-0030-1267085
    1. Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Ungar GH, et al. . The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia I. (1969) 7:179–92. 10.1038/sc.1969.30
    1. Bracken MB, Webb SB, Jr, Wagner FC. Classification of the severity of acute spinal cord injury: implications for management. Paraplegia. (1978) 15:319–26. 10.1038/sc.1977.48
    1. Lucas JT, Ducker TB. Motor classification of spinal cord injuries with mobility, morbidity and recovery indices. Am Surg. (1979) 45:151–8.
    1. Klose KJ, Green BA, Smith RS, Adkins RH, MacDonald AM. University of Miami Neuro-Spinal Index (UMNI): a quantitative method for determining spinal cord function. Paraplegia. (1980) 18:331–6.
    1. Chehrazi B, Wagner FC, Jr, Collins WF, Jr, Freeman DH, Jr. A scale for evaluation of spinal cord injury. J Neurosurg. (1981) 54:310–5. 10.3171/jns.1981.54.3.0310
    1. Waters RL, Adkins RH, Yakura JS, Sie I. Motor and sensory recovery following incomplete tetraplegia. Arch Phys Med Rehabil. (1994) 75:306–11. 10.1016/0003-9993(94)90034-5
    1. Brown PJ, Marino RJ, Herbison GJ, Ditunno JF, Jr. The 72-hour examination as a predictor of recovery in motor complete quadriplegia. Arch Phys Med Rehabil. (1991) 72:546–8.
    1. Waters RL, Yakura JS, Adkins RH, Sie I. Recovery following complete paraplegia. Arch Phys Med Rehabil. (1992) 73:784–9.
    1. Ditunno JF, Jr, Sipski ML, Posuniak EA, Chen YT, Staas WE, Jr, Herbison GJ. Wrist extensor recovery in traumatic quadriplegia. Arch Phys Med Rehabil. (1987) 68(5 Pt 1):287–90.
    1. Folman Y, el Masri W. Spinal cord injury: prognostic indicators. Injury. (1989) 20:92–3. 10.1016/0020-1383(89)90148-4
    1. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. . Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. (2007) 45:190–205. 10.1038/sj.sc.3102007
    1. Kirshblum SC, O'Connor KC. Predicting neurologic recovery in traumatic cervical spinal cord injury. Arch Phys Med Rehabil. (1998) 79:1456–66. 10.1016/S0003-9993(98)90244-1
    1. Stauffer ES. Neurologic recovery following injuries to the cervical spinal cord and nerve roots. Spine. (1984) 9:532–4. 10.1097/00007632-198407000-00024
    1. Oleson CV, Burns AS, Ditunno JF, Geisler FH, Coleman WP. Prognostic value of pinprick preservation in motor complete, sensory incomplete spinal cord injury. Arch Phys Med Rehabil. (2005) 86:988–92. 10.1016/j.apmr.2004.09.031
    1. Nardone R, Florea C, Holler Y, Brigo F, Versace V, Lochner P, et al. . Rodent, large animal and non-human primate models of spinal cord injury. Zoology. (2017) 123:101–14. 10.1016/j.zool.2017.06.004
    1. Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research. Spine. (2002) 27:1504–10. 10.1097/00007632-200207150-00005
    1. Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech. (2016) 9:1125–37. 10.1242/dmm.025833
    1. Noble LJ, Wrathall JR. Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Exp Neurol. (1985) 88:135–49. 10.1016/0014-4886(85)90119-0
    1. Blight AR, Decrescito V. Morphometric analysis of experimental spinal cord injury intensity to survival of myelinated axons. Neuroscience. (1986) 19:321–41. 10.1016/0306-4522(86)90025-4
    1. Bresnahan JC, King JS, Martin GF, Yashon D. A neuroanatomical analysis of spinal cord injury in the rhesus monkey (Macaca mulatta). J Neurol Sci. (1976) 28:521–42. 10.1016/0022-510X(76)90122-2
    1. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. (2000) 17:1–17. 10.1089/neu.2000.17.1
    1. Jakeman LB, Guan Z, Wei P, Ponnappan R, Dzwonczyk R, Popovich PG, et al. . Traumatic spinal cord injury produced by controlled contusion in mouse. J Neurotrauma. (2000) 17:299–319. 10.1089/neu.2000.17.299
    1. Ma M, Basso DM, Walters P, Stokes BT, Jakeman LB. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp Neurol. (2001) 169:239–54. 10.1006/exnr.2001.7679
    1. Kuhn PL, Wrathall JR. A mouse model of graded contusive spinal cord injury. J Neurotrauma. (1998) 15:125–40. 10.1089/neu.1998.15.125
    1. Byrnes KR, Fricke ST, Faden AI. Neuropathological differences between rats and mice after spinal cord injury. J Magn Reson Imaging. (2010) 32:836–46. 10.1002/jmri.22323
    1. Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol. (2003) 462:223–40. 10.1002/cne.10736
    1. Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, et al. . Role of neutrophils in spinal cord injury in the rat. Neuroscience. (1997) 79:1177–82. 10.1016/S0306-4522(97)00011-0
    1. Kigerl KA, McGaughy VM, Popovich PG. Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol. (2006) 494:578–94. 10.1002/cne.20827
    1. Kwon BK, Streijger F, Hill CE, Anderson AJ, Bacon M, Beattie MS, et al. . Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp Neurol. (2015) 269:154–68. 10.1016/j.expneurol.2015.04.008
    1. Cheriyan T, Ryan DJ, Weinreb JH, Cheriyan J, Paul JC, Lafage V, et al. . Spinal cord injury models: a review. Spinal Cord. (2014) 52:588–95. 10.1038/sc.2014.91
    1. Lee JH, Jones CF, Okon EB, Anderson L, Tigchelaar S, Kooner P, et al. . A novel porcine model of traumatic thoracic spinal cord injury. J Neurotrauma. (2013) 30:142–59. 10.1089/neu.2012.2386
    1. Nout YS, Rosenzweig ES, Brock JH, Strand SC, Moseanko R, Hawbecker S, et al. . Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury. Neurotherapeutics. (2012) 9:380–92. 10.1007/s13311-012-0114-0
    1. Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, et al. . Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol. (1997) 148:453–63. 10.1006/exnr.1997.6695
    1. Constantini S, Young W. The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg. (1994) 80:97–111. 10.3171/jns.1994.80.1.0097
    1. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, et al. . MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma. (1996) 13:343–59.
    1. Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE, Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma. (2003) 20:179–93. 10.1089/08977150360547099
    1. Stokes BT. Experimental spinal cord injury: a dynamic and verifiable injury device. J Neurotrauma. (1992) 9:129–31; discussion 131-4. 10.1089/neu.1992.9.129
    1. Somerson SK, Stokes BT. Functional analysis of an electromechanical spinal cord injury device. Exp Neurol. (1987) 96:82–96.
    1. Stokes BT, Somerson SK. Spinal cord extracellular microenvironment. Can the changes resulting from trauma be graded? Neurochem Pathol. (1987) 7:47–55. 10.1007/BF02834291
    1. Rivlin AS, Tator CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol. (1978) 10:38–43.
    1. Joshi M, Fehlings MG. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma. (2002) 19:175–90. 10.1089/08977150252806947
    1. Marcol W, Slusarczyk W, Gzik M, Larysz-Brysz M, Bobrowski M, Grynkiewicz-Bylina B, et al. . Air gun impactor–a novel model of graded white matter spinal cord injury in rodents. J Reconstr Microsurg. (2012) 28:561–8. 10.1055/s-0032-1315779
    1. Blight AR. Morphometric analysis of a model of spinal cord injury in guinea pigs, with behavioral evidence of delayed secondary pathology. J Neurol Sci. (1991) 103:156–71. 10.1016/0022-510X(91)90159-5
    1. Plemel JR, Duncan G, Chen KW, Shannon C, Park S, Sparling JS, et al. . A graded forceps crush spinal cord injury model in mice. J Neurotrauma. (2008) 25:350–70. 10.1089/neu.2007.0426
    1. Tarlov IM, Klinger H, Vitale S. Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry. (1953) 70:813–9. 10.1001/archneurpsyc.1953.02320360128010
    1. Bao F, Liu D. Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience. (2002) 115:839–49. 10.1016/S0306-4522(02)00506-7
    1. da Costa ES, Carvalho AL, Martinez AM, De-Ary-Pires B, Pires-Neto MA, de Ary-Pires R. Strapping the spinal cord: an innovative experimental model of CNS injury in rats. J Neurosci Methods. (2008) 170:130–9. 10.1016/j.jneumeth.2008.01.004
    1. Dabney KW, Ehrenshteyn M, Agresta CA, Twiss JL, Stern G, Tice L, et al. . A model of experimental spinal cord trauma based on computer-controlled intervertebral distraction: characterization of graded injury. Spine. (2004) 29:2357–64. 10.1097/01.brs.0000143108.65385.74
    1. Seifert JL, Bell JE, Elmer BB, Sucato DJ, Romero MI. Characterization of a novel bidirectional distraction spinal cord injury animal model. J Neurosci Methods. (2011) 197:97–103. 10.1016/j.jneumeth.2011.02.003
    1. Fiford RJ, Bilston LE, Waite P, Lu J. A vertebral dislocation model of spinal cord injury in rats. J Neurotrauma. (2004) 21:451–8. 10.1089/089771504323004593
    1. Heimburger RF. Return of function after spinal cord transection. Spinal Cord. (2005) 43:438–40. 10.1038/sj.sc.3101748
    1. Dyer JK, Bourque JA, Steeves JD. Regeneration of brainstem-spinal axons after lesion and immunological disruption of myelin in adult rat. Exp Neurol. (1998) 154:12–22. 10.1006/exnr.1998.6905
    1. Seitz A, Aglow E, Heber-Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. (2002) 67:337–45. 10.1002/jnr.10098
    1. Inman D, Guth L, Steward O. Genetic influences on secondary degeneration and wound healing following spinal cord injury in various strains of mice. J Comp Neurol. (2002) 451:225–35. 10.1002/cne.10340
    1. Hall SM, Gregson NA. The in vivo and ultrastructural effects of injection of lysophosphatidyl choline into myelinated peripheral nerve fibres of the adult mouse. J Cell Sci. (1971) 9:769–89.
    1. Dubois-Dalcq ME, Doller EW, Haspel MV, Holmes KV. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology. (1982) 119:317–31. 10.1016/0042-6822(82)90092-7
    1. Matsushima GK, Morell P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol. (2001) 11:107–16. 10.1111/j.1750-3639.2001.tb00385.x
    1. Woodruff RH, Franklin RJ. Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia. (1999) 10.1002/(SICI)1098-1136(19990201)25:3<216::AID-GLIA2>;2-L
    1. Barbeau H, McCrea DA, O'Donovan MJ, Rossignol S, Grill WM, Lemay MA. Tapping into spinal circuits to restore motor function. Brain Res Brain Res Rev. (1999) 30:27–51. 10.1016/S0165-0173(99)00008-9
    1. Gruner JA. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma. (1992) 9:123–6; discussion 126–8. 10.1089/neu.1992.9.123
    1. Petteys RJ, Spitz SM, Syed H, Rice RA, Sarabia-Estrada R, Goodwin CR, et al. . Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury. J Clin Neurosci. (2017) 43:229–34. 10.1016/j.jocn.2017.04.031
    1. Poon PC, Gupta D, Shoichet MS, Tator CH. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine. (2007) 32:2853–9. 10.1097/BRS.0b013e31815b7e6b
    1. Aslan A, Cemek M, Eser O, Altunbas K, Buyukokuroglu ME, Cosar M, et al. . Does dexmedetomidine reduce secondary damage after spinal cord injury? An experimental study. Eur Spine J. (2009) 18:336–44. 10.1007/s00586-008-0872-x
    1. Nesathurai S, Graham WA, Mansfield K, Magill D, Sehgal P, Westmoreland SV, et al. . Model of traumatic spinal cord injury in Macaca fascicularis: similarity of experimental lesions created by epidural catheter to human spinal cord injury. J Med Primatol. (2006) 35:401–4. 10.1111/j.1600-0684.2006.00162.x
    1. Fukuda S, Nakamura T, Kishigami Y, Endo K, Azuma T, Fujikawa T, et al. . New canine spinal cord injury model free from laminectomy. Brain Res Brain Res Protoc. (2005) 14:171–80. 10.1016/j.brainresprot.2005.01.001
    1. Alfred Reginald A. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA. (1911) 57:878–80.
    1. von Leden RE, Yauger YJ, Khayrullina G, Byrnes KR. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets. J Neurotrauma. (2017) 34:755–64. 10.1089/neu.2016.4486
    1. Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev. (2018) 98:881–917. 10.1152/physrev.00017.2017
    1. Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Exp Neurol. (2015) 269:169–87. 10.1016/j.expneurol.2015.04.006
    1. Alizadeh A, Karimi-Abdolrezaee S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol. (2016) 594:3539–52. 10.1113/JP270895
    1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci. (2015) 8:35. 10.3389/fnmol.2015.00035
    1. Couillard-Despres S, Vogl M. Pathophysiology of traumatic spinal cord injury. In: Rupp R, Weidner N., Tansey K. editors. Neurological Aspects of Spinal Cord Injury. Switzerland: Springer International Publishing, (2017).
    1. Koyanagi I, Tator CH, Theriault E. Silicone rubber microangiography of acute spinal cord injury in the rat. Neurosurgery. (1993) 32:260–8; discussion 268. 10.1227/00006123-199302000-00015
    1. Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg. (1997) 86:483–92. 10.3171/jns.1997.86.3.0483
    1. Rivlin AS, Tator CH. Regional spinal cord blood flow in rats after severe cord trauma. J Neurosurg. (1978) 49:844–53. 10.3171/jns.1978.49.6.0844
    1. Hayashi N, Green BA, Mora J, Gonzalez-Carvajal M, Veraa RP. Simultaneous measurement of local blood flow and tissue oxygen in rat spinal cord. Neurol Res. (1983) 5:49–58. 10.1080/01616412.1983.11758588
    1. Turnbull IM. Microvasculature of the human spinal cord. J Neurosurg. (1971) 35:141–7. 10.3171/jns.1971.35.2.0141
    1. Balentine JD. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest. (1978) 39:236–53.
    1. Ahuja CS, Martin AR, Fehlings M. Recent advances in managing a spinal cord injury secondary to trauma. F1000Res. (2016) 5:F1000. 10.12688/f1000research.7586.1
    1. Agrawal S, Fehlings M. Mechanisms of secondary injury to spinal cord axons in virto: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. J Neurosci. (1996) 16:545–52. 10.1523/JNEUROSCI.16-02-00545.1996
    1. Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of secondary spinal cord injury. Front Cell Neurosci. (2016) 10:98. 10.3389/fncel.2016.00098
    1. Karadottir R, Attwell D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience. (2007) 145:1426–38. 10.1016/j.neuroscience.2006.08.070
    1. Verkhratsky A, Steinhauser C. Ion channels in glial cells. Brain Res Brain Res Rev. (2000) 32:380–412. 10.1016/S0165-0173(99)00093-4
    1. Gottlieb M, Matute C. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab. (1997) 17:290–300. 10.1097/00004647-199703000-00006
    1. Vanzulli I, Butt AM. mGluR5 protect astrocytes from ischemic damage in postnatal CNS white matter. Cell Calcium. (2015) 58:423–30. 10.1016/j.ceca.2015.06.010
    1. Xu GY, Hughes MG, Ye Z, Hulsebosch CE, McAdoo DJ. Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Exp Neurol. (2004) 187:329–36. 10.1016/j.expneurol.2004.01.029
    1. Panter SS, Yum SW, Faden AI. Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol. (1990) 27:96–9. 10.1002/ana.410270115
    1. Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium. (2010) 47:130–9. 10.1016/j.ceca.2009.11.008
    1. Leist M, Nicotera P. Calcium and neuronal death. Rev Physiol Biochem Pharmacol. (1998) 132:79–125. 10.1007/BFb0004986
    1. Verkhratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol. (2002) 447:141–54. 10.1016/S0014-2999(02)01838-1
    1. Verkhratsky A, Toescu EC. Endoplasmic reticulum Ca(2+) homeostasis and neuronal death. J Cell Mol Med. (2003) 7:351–61. 10.1111/j.1582-4934.2003.tb00238.x
    1. Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J. (2010) 277:3622–36. 10.1111/j.1742-4658.2010.07754.x
    1. Duchen MR. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch. (2012) 464:111–21. 10.1007/s00424-012-1112-0
    1. Li S, Stys PK. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci. (2000) 20:1190–8. 10.1523/JNEUROSCI.20-03-01190.2000
    1. Xu GY, Liu S, Hughes MG, McAdoo DJ. Glutamate-induced losses of oligodendrocytes and neurons and activation of caspase-3 in the rat spinal cord. Neuroscience. (2008) 153:1034–47. 10.1016/j.neuroscience.2008.02.065
    1. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. (1999) 51:7–61.
    1. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature. (1986) 321:519–22. 10.1038/321519a0
    1. Li S, Stys PK. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience. (2001) 107:675–83. 10.1016/S0306-4522(01)00385-2
    1. Faden AI, Simon RP. A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol. (1988) 23:623–6. 10.1002/ana.410230618
    1. Wada S, Yone K, Ishidou Y, Nagamine T, Nakahara S, Niiyama T, et al. . Apoptosis following spinal cord injury in rats and preventative effect of N-methyl-D-aspartate receptor antagonist. J Neurosurg. (1999) 91(1 Suppl.), 98–104.
    1. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. (2004) 25:365–451. 10.1016/j.mam.2004.03.001
    1. Starkov AA, Chinopoulos C, Fiskum G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium. (2004) 36:257–64. 10.1016/j.ceca.2004.02.012
    1. Pandya JD, Nukala VN, Sullivan PG. Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics. (2013) 5:10. 10.3389/fnene.2013.00010
    1. LoPachin RM, Gaughan CL, Lehning EJ, Kaneko Y, Kelly TM, Blight A. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. J Neurophysiol. (1999) 82:2143–53. 10.1152/jn.1999.82.5.2143
    1. McAdoo DJ, Hughes MG, Nie L, Shah B, Clifton C, Fullwood S, et al. . The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage –> glutamate release –> damage –> glutamate release –> etc. Brain Res. (2005) 1038:92–9. 10.1016/j.brainres.2005.01.024
    1. Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. Neurosci J. (1992) 12:430–9. 10.1523/JNEUROSCI.12-02-00430.1992
    1. Regan RF, Choi DW. Glutamate neurotoxicity in spinal cord cell culture. Neuroscience. (1991) 43:585–91. 10.1016/0306-4522(91)90317-H
    1. Reithmeier RA. Mammalian exchangers and co-transporters. Curr Opin Cell Biol. (1994) 6:583–94. 10.1016/0955-0674(94)90080-9
    1. Shimizu EN, Seifert JL, Johnson KJ, Romero-Ortega MI. Prophylactic riluzole attenuates oxidative stress damage in spinal cord distraction. J Neurotrauma. (2018) 35:1319–28. 10.1089/neu.2017.5494
    1. Satkunendrarajah K, Nassiri F, Karadimas SK, Lip A, Yao G, Fehlings MG. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection. Exp Neurol. (2016) 276:59–71. 10.1016/j.expneurol.2015.09.011
    1. Fehlings MG, Wilson JR, Frankowski RF, Toups EG, Aarabi B, Harrop JS, et al. . Riluzole for the treatment of acute traumatic spinal cord injury: rationale for and design of the NACTN Phase I clinical trial. J Neurosurg Spine. (2012) 17(1 Suppl.), 151–6. 10.3171/2012.4.AOSPINE1259
    1. Nagoshi N, Nakashima H, Fehlings MG. Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules. (2015) 20:7775–89. 10.3390/molecules20057775
    1. Pruss H, Kopp MA, Brommer B, Gatzemeier N, Laginha I, Dirnagl U, et al. . Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol. (2011) 21:652–60. 10.1111/j.1750-3639.2011.00488.x
    1. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta. (2012) 1822:675–84. 10.1016/j.bbadis.2011.10.017
    1. Christie SD, Comeau B, Myers T, Sadi D, Purdy M, Mendez I. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurg Focus. (2008) 25:E5. 10.3171/FOC.2008.25.11.E5
    1. Barut S, Canbolat A, Bilge T, Aydin Y, Cokneseli B, Kaya U. Lipid peroxidation in experimental spinal cord injury: time-level relationship. Neurosurg Rev. (1993) 16:53–9. 10.1007/BF00308614
    1. Hall ED. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. (2011) 8:152–67. 10.1007/s13311-011-0026-4
    1. Hall ED. Chapter 6: The contributing role of lipid peroxidation and protein oxidation in the course of CNS injury neurodegeneration and neuroprotection: an overview. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton, FL: CRC Press; Taylor & Francis; (2015).
    1. Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem. (1997) 68:2469–76. 10.1046/j.1471-4159.1997.68062469.x
    1. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. (2001) 53:135–59.
    1. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog Brain Res. (2002) 137:37–47. 10.1016/S0079-6123(02)37006-7
    1. Almad A, Sahinkaya FR, McTigue DM. Oligodendrocyte fate after spinal cord injury. Neurotherapeutics. (2011) 8:262–73. 10.1007/s13311-011-0033-5
    1. Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience. (2001) 103:203–18. 10.1016/S0306-4522(00)00538-8
    1. Dyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. LAR and PTPsigma receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia. (2019) 67:125–45. 10.1002/glia.23533
    1. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. (1997) 3:73–6. 10.1038/nm0197-73
    1. Lou J, Lenke LG, Ludwig FJ, O'Brien MF. Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord. (1998) 36:683–90. 10.1038/sj.sc.3100632
    1. Wang Z, Zhang C, Hong Z, Chen H, Chen W, Chen G. C/EBP homologous protein (CHOP) mediates neuronal apoptosis in rats with spinal cord injury. Exp Ther Med. (2013) 5:107–111. 10.3892/etm.2012.745
    1. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. . Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. (2012) 19:107–20. 10.1038/cdd.2011.96
    1. Liu M, Wu W, Li H, Li S, Huang LT, Yang YQ, et al. . Necroptosis, a novel type of programmed cell death, contributes to early neural cells damage after spinal cord injury in adult mice. J Spinal Cord Med. (2015) 38:745–53. 10.1179/2045772314Y.0000000224
    1. Juliet PA, Frost EE, Balasubramaniam J, Del Bigio MR. Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in culture. J Neurochem. (2009) 109:1285–99. 10.1111/j.1471-4159.2009.06060.x
    1. Gudz TI, Komuro H, Macklin WB. Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. J Neurosci. (2006) 26:2458–66. 10.1523/JNEUROSCI.4054-05.2006
    1. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, et al. . P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci. (2007) 27:9525–33. 10.1523/JNEUROSCI.0579-07.2007
    1. Antel JP, Williams K, Blain M, McRea E, McLaurin J. Oligodendrocyte lysis by CD4+ T cells independent of tumor necrosis factor. Ann Neurol. (1994) 35:341–8. 10.1002/ana.410350315
    1. Takahashi JL, Giuliani F, Power C, Imai Y, Yong VW. Interleukin-1beta promotes oligodendrocyte death through glutamate excitotoxicity. Ann Neurol. (2003) 53:588–95. 10.1002/ana.10519
    1. Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. (2000) 17:915–25. 10.1089/neu.2000.17.915
    1. Jana A, Pahan K. Oxidative stress kills human primary oligodendrocytes via neutral sphingomyelinase: implications for multiple sclerosis. J Neuroimmune Pharmacol. (2007) 2:184–93. 10.1007/s11481-007-9066-2
    1. Thorburne SK, Juurlink BH. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem. (1996) 67:1014–22. 10.1046/j.1471-4159.1996.67031014.x
    1. Fujikawa DG, Shinmei SS, Cai B. Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience. (2000) 98:41–53. 10.1016/S0306-4522(00)00085-3
    1. Dunai Z, Bauer PI, Mihalik R. Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res. (2011) 17:791–800. 10.1007/s12253-011-9433-4
    1. Liu S, Li Y, Choi HMC, Sarkar C, Koh EY, Wu J, et al. . Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis. Cell Death Dis. (2018) 9:476. 10.1038/s41419-018-0469-1
    1. McTigue DM, Wei P, Stokes BT. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci. (2001) 21:3392–400. 10.1523/JNEUROSCI.21-10-03392.2001
    1. Mizuno Y, Mochizuki H, Sugita Y, Goto K. Apoptosis in neurodegenerative disorders. Intern Med. (1998) 37:192–3. 10.2169/internalmedicine.37.192
    1. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, et al. . Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci. (1997) 17:5395–406. 10.1523/JNEUROSCI.17-14-05395.1997
    1. Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. (2005) 192:384–93. 10.1016/j.expneurol.2004.11.033
    1. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. (2007) 35:495–516. 10.1080/01926230701320337
    1. Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian J Med Res. (2012) 135:287–96.
    1. Amemiya S, Kamiya T, Nito C, Inaba T, Kato K, Ueda M, et al. . Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol. (2005) 516:125–30. 10.1016/j.ejphar.2005.04.036
    1. Davis AR, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury. J Neurotrauma. (2007) 24:823–34. 10.1089/neu.2006.0227
    1. Casha S, Yu WR, Fehlings MG. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol. (2005) 196:390–400. 10.1016/j.expneurol.2005.08.020
    1. Robins-Steele S, Nguyen DH, Fehlings MG. The delayed post-injury administration of soluble fas receptor attenuates post-traumatic neural degeneration and enhances functional recovery after traumatic cervical spinal cord injury. J Neurotrauma. (2012) 29:1586–99. 10.1089/neu.2011.2005
    1. Ackery A, Robins S, Fehlings MG. Inhibition of Fas-mediated apoptosis through administration of soluble Fas receptor improves functional outcome and reduces posttraumatic axonal degeneration after acute spinal cord injury. J Neurotrauma. (2006) 23:604–16. 10.1089/neu.2006.23.604
    1. Yu WR, Fehlings MG. Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application. Acta Neuropathol. (2011) 122:747–61. 10.1007/s00401-011-0882-3
    1. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. (2015) 22:367–76. 10.1038/cdd.2014.143
    1. Zhou K, Sansur CA, Xu H, Jia X. The temporal pattern, flux, and function of autophagy in spinal cord injury. Int J Mol Sci. (2017) 18:E466. 10.3390/ijms18020466
    1. Mizushima N. Autophagy: process and function. Genes Dev. (2007) 21:2861–73. 10.1101/gad.1599207
    1. Xu Y, Xia X, Pan H. Active autophagy in the tumor microenvironment: a novel mechanism for cancer metastasis. Oncol Lett. (2013) 5:411–6. 10.3892/ol.2012.1015
    1. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. . Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. (2006) 26:9220–31. 10.1128/MCB.01453-06
    1. He M, Ding Y, Chu C, Tang J, Xiao Q, Luo ZG. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci USA. (2016) 113:11324–9. 10.1073/pnas.1611282113
    1. Chen J, Sun M, Zhang X, Miao Z, Chua BH, Hamdy RC, et al. . Increased oligodendrogenesis by humanin promotes axonal remyelination and neurological recovery in hypoxic/ischemic brains. Hippocampus. (2015) 25:62–71. 10.1002/hipo.22350
    1. Liu J, Weaver J, Jin X, Zhang Y, Xu J, Liu KJ, et al. . Nitric oxide interacts with caveolin-1 to facilitate autophagy-lysosome-mediated claudin-5 degradation in oxygen-glucose deprivation-treated endothelial cells. Mol Neurobiol. (2016) 53:5935–47. 10.1007/s12035-015-9504-8
    1. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. (2011) 147:728–41. 10.1016/j.cell.2011.10.026
    1. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. (2008) 451:1069–75. 10.1038/nature06639
    1. Winslow AR, Rubinsztein DC. Autophagy in neurodegeneration and development. Biochim Biophys Acta. (2008) 1782:723–9. 10.1016/j.bbadis.2008.06.010
    1. Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, et al. . Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol. (2013) 48:452–64. 10.1007/s12035-013-8432-8
    1. Yu D, Li M, Ni B, Kong J, Zhang Z. Induction of neuronal mitophagy in acute spinal cord injury in rats. Neurotox Res. (2013) 24:512–22. 10.1007/s12640-013-9397-0
    1. Popovich PG, Stuckman S, Gienapp IE, Whitacre CC. Alterations in immune cell phenotype and function after experimental spinal cord injury. J Neurotrauma. (2001) 18:957–66. 10.1089/089771501750451866
    1. Miron VE, Franklin RJ. Macrophages and CNS remyelination. J Neurochem. (2014) 130:165–71. 10.1111/jnc.12705
    1. Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. (2008) 209:378–88. 10.1016/j.expneurol.2007.06.009
    1. Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des. (2005) 11:1223–36. 10.2174/1381612053507468
    1. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. (2009) 29:13435–44. 10.1523/JNEUROSCI.3257-09.2009
    1. Jones TB, Hart RP, Popovich PG. Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci. (2005) 25:6576–83. 10.1523/JNEUROSCI.0305-05.2005
    1. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain. (2010) 133(Pt 2):433–47. 10.1093/brain/awp322
    1. Jones TB. Lymphocytes and autoimmunity after spinal cord injury. Exp Neurol. (2014) 258:78–90. 10.1016/j.expneurol.2014.03.003
    1. Abul Abbas AH, Shiv Pillai LK. Cellualar and Molecular Immunology. Elsevier; (2018).
    1. Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. (2006) 99:1073–87. 10.1111/j.1471-4159.2006.04147.x
    1. Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine. (2015) 74:318–26. 10.1016/j.cyto.2015.02.007
    1. Walsh JT, Kipnis J. Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med. (2011) 17:541–7. 10.1016/j.molmed.2011.05.012
    1. Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J, et al. . Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci. (2016) 36:4182–95. 10.1523/JNEUROSCI.4317-15.2016
    1. Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol. (2016) 37:608–20. 10.1016/j.it.2016.06.006
    1. Cekanaviciute E, Buckwalter MS. Astrocytes: integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics. (2016) 13:685–701. 10.1007/s13311-016-0477-8
    1. Pineau I, Sun L, Bastien D, Lacroix S. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun. (2010) 24:540–53. 10.1016/j.bbi.2009.11.007
    1. Pineau I, Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol. (2007) 500:267–85. 10.1002/cne.21149
    1. Sun N, Grzybicki D, Castro RF, Murphy S, Perlman S. Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus. Virology. (1995) 213:482–93. 10.1006/viro.1995.0021
    1. Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, et al. . Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. J Neurochem. (2005) 95:331–40. 10.1111/j.1471-4159.2005.03368.x
    1. Park C, Lee S, Cho IH, Lee HK, Kim D, Choi SY, et al. . TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia. (2006) 53:248–56. 10.1002/glia.20278
    1. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. . Genomic analysis of reactive astrogliosis. J Neurosci. (2012) 32:6391–410. 10.1523/JNEUROSCI.6221-11.2012
    1. Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, et al. . Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med. (2005) 202:145–56. 10.1084/jem.20041918
    1. Haroon F, Drogemuller K, Handel U, Brunn A, Reinhold D, Nishanth G, et al. . Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J Immunol. (2011) 186:6521–31. 10.4049/jimmunol.1001135
    1. Cho ML, Min SY, Chang SH, Kim KW, Heo SB, Lee SH, et al. . Transforming growth factor beta 1(TGF-beta1) down-regulates TNFalpha-induced RANTES production in rheumatoid synovial fibroblasts through NF-kappaB-mediated transcriptional repression. Immunol Lett. (2006) 105:159–66. 10.1016/j.imlet.2006.02.003
    1. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki Y, Ishii K, et al. . onditional ablation of Stat3 or Socs3 discloses a dual role of reactive astrocytes after spinal cord injury. Nat Med. (2006) 12:829–834. 10.1038/nm1425
    1. Colombo E, Di Dario M, Capitolo E, Chaabane L, Newcombe J, Martino G, et al. . Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Ann Neurol. (2014) 76:325–37. 10.1002/ana.24217
    1. Dusart I, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci. (1994) 6:712–24. 10.1111/j.1460-9568.1994.tb00983.x
    1. Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S. Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation. (2014) 11:150. 10.1186/s12974-014-0150-2
    1. Farooque M, Isaksson J, Olsson Y. Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice. Neuroreport. (1999) 10:131–4. 10.1097/00001756-199901180-00024
    1. Stirling DP, Liu S, Kubes P, Yong VW. Depletion of Ly6G/Gr-1 leukocytes after spinal cord injury in mice alters wound healing and worsens neurological outcome. J Neurosci. (2009) 29:753–64. 10.1523/JNEUROSCI.4918-08.2009
    1. Schroder AK, von der Ohe M, Kolling U, Altstaedt J, Uciechowski P, Fleischer D, et al. . Polymorphonuclear leucocytes selectively produce anti-inflammatory interleukin-1 receptor antagonist and chemokines, but fail to produce pro-inflammatory mediators. Immunology. (2006) 119:317–27. 10.1111/j.1365-2567.2006.02435.x
    1. Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. (2013) 35:601–12. 10.1007/s00281-013-0382-8
    1. Herz J, Filiano AJ, Smith A, Yogev N, Kipnis J. Myeloid cells in the central nervous system. Immunity. (2017) 46:943–956. 10.1016/j.immuni.2017.06.007
    1. Greenhalgh AD, David S. Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J Neurosci. (2014) 34:6316–22. 10.1523/JNEUROSCI.4912-13.2014
    1. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. (2013) 7:45. 10.3389/fncel.2013.00045
    1. Zhou X, He X, Ren Y. Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regen Res. (2014) 9:1787–95. 10.4103/1673-5374.143423
    1. Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. (2014) 41:21–35. 10.1016/j.immuni.2014.06.013
    1. David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. (2011) 12:388–99. 10.1038/nrn3053
    1. Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. (1996) 16:2508–21. 10.1523/JNEUROSCI.16-08-02508.1996
    1. Chamak B, Morandi V, Mallat M. Brain macrophages stimulate neurite growth and regeneration by secreting thrombospondin. J Neurosci Res. (1994) 38:221–33. 10.1002/jnr.490380213
    1. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. . ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. (2005) 8:752–8. 10.1038/nn1472
    1. David S, Greenhalgh AD, Kroner A. Macrophage and microglial plasticity in the injured spinal cord. Neuroscience. (2015) 307:311–8. 10.1016/j.neuroscience.2015.08.064
    1. Orr MB, Gensel JC. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics. (2018) 15:541–53. 10.1007/s13311-018-0631-6
    1. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. . Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. (2014) 41:14–20. 10.1016/j.immuni.2014.07.009
    1. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. (2014) 83:1098–116. 10.1016/j.neuron.2014.07.027
    1. Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, et al. . Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol. (2018) 16:e2005264. 10.1371/journal.pbio.2005264
    1. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. (2016) 173:649–65. 10.1111/bph.13139
    1. Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. . Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. (2011) 17:2–15. 10.1177/1352458510379243
    1. Rathore KI, Kerr BJ, Redensek A, Lopez-Vales R, Jeong SY, Ponka P, et al. . Ceruloplasmin protects injured spinal cord from iron-mediated oxidative damage. J Neurosci. (2008) 28:12736–47. 10.1523/JNEUROSCI.3649-08.2008
    1. Bao F, Chen Y, Dekaban GA, Weaver LC. Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats. J Neurochem. (2004) 88:1335–44. 10.1046/j.1471-4159.2003.02240.x
    1. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. (2006) 177:7303–11. 10.4049/jimmunol.177.10.7303
    1. Busch SA, Horn KP, Silver DJ, Silver J. Overcoming macrophage-mediated axonal dieback following CNS injury. Neurosci J. (2009) 29:9967–76. 10.1523/JNEUROSCI.1151-09.2009
    1. Hata K, Fujitani M, Yasuda Y, Doya H, Saito T, Yamagishi S, et al. . RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J Cell Biol. (2006) 173:47–58. 10.1083/jcb.200508143
    1. Schwab JM, Conrad S, Monnier PP, Julien S, Mueller BK, Schluesener HJ. Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM). Eur J Neurosci. (2005) 21:1569–76. 10.1111/j.1460-9568.2005.03962.x
    1. Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, et al. . Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPsigma receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflammation. (2018) 15:90. 10.1186/s12974-018-1128-2
    1. Knoblach SM, Faden AI. Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol. (1998) 153:143–51. 10.1006/exnr.1998.6877
    1. Thompson CD, Zurko JC, Hanna BF, Hellenbrand DJ, Hanna A. The therapeutic role of interleukin-10 after spinal cord injury. J Neurotrauma. (2013) 30:1311–24. 10.1089/neu.2012.2651
    1. Zhou Z, Peng X, Insolera R, Fink DJ, Mata M. IL-10 promotes neuronal survival following spinal cord injury. Exp Neurol. (2009) 220:183–90. 10.1016/j.expneurol.2009.08.018
    1. Genovese T, Esposito E, Mazzon E, Di Paola R, Caminiti R, Bramanti P, et al. . Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice. J Neurochem. (2009) 108:1360–72. 10.1111/j.1471-4159.2009.05899.x
    1. Braga TT, Agudelo JS, Camara NO. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol. (2015) 6:602. 10.3389/fimmu.2015.00602
    1. Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. (2013) 1832:989–97. 10.1016/j.bbadis.2012.12.001
    1. Lin YH, Chou CH, Wu XM, Chang YY, Hung CS, Chen YH, et al. . Aldosterone induced galectin-3 secretion in vitro and in vivo: from cells to humans. PLoS ONE. (2014) 9:e95254. 10.1371/journal.pone.0095254
    1. Brennan FH, Popovich PG. Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Curr Opin Neurol. (2018) 31:334–44. 10.1097/WCO.0000000000000550
    1. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. (2013) 13:227–42. 10.1038/nri3405
    1. Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci. (2008) 9:481–93. 10.1038/nrn2398
    1. Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC, et al. . Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci. (2002) 22:2690–700. 10.1523/JNEUROSCI.22-07-02690.2002
    1. Potas JR, Zheng Y, Moussa C, Venn M, Gorrie CA, Deng C, et al. . Augmented locomotor recovery after spinal cord injury in the athymic nude rat. J Neurotrauma. (2006) 23:660–73. 10.1089/neu.2006.23.660
    1. Walsh JT, Zheng J, Smirnov I, Lorenz U, Tung K, Kipnis J. Regulatory T cells in central nervous system injury: a double-edged sword. J Immunol. (2014) 193:5013–22. 10.4049/jimmunol.1302401
    1. Ankeny DP, Guan Z, Popovich PG. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest. (2009) 119:2990–9. 10.1172/JCI39780
    1. Kil K, Zang YC, Yang D, Markowski J, Fuoco GS, Vendetti GC, et al. . T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis. J Neuroimmunol. (1999) 98:201–7. 10.1016/S0165-5728(99)00057-0
    1. Zajarias-Fainsod D, Carrillo-Ruiz J, Mestre H, Grijalva I, Madrazo I, Ibarra A. Autoreactivity against myelin basic protein in patients with chronic paraplegia. Eur Spine J. (2012) 21:964–70. 10.1007/s00586-011-2060-7
    1. Hayes KC, Hull TC, Delaney GA, Potter PJ, Sequeira KA, Campbell K, Popovich PG. Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma. (2002) 19:753–61. 10.1089/08977150260139129
    1. Popovich PG, Stokes BT, Whitacre CC. Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res. (1996) 45:349–63. 10.1002/(SICI)1097-4547(19960815)45:4<349::AID-JNR4>;2-9
    1. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. (2010) 10:236–47. 10.1038/nri2729
    1. Ankeny DP, Popovich PG. B cells and autoantibodies: complex roles in CNS injury. Trends Immunol. (2010) 31:332–8. 10.1016/j.it.2010.06.006
    1. Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol. (2007) 207:75–84. 10.1016/j.expneurol.2007.05.019
    1. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, et al. . Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci. (2011) 31:8556–63. 10.1523/JNEUROSCI.1623-11.2011
    1. Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI, et al. . Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature. (2012) 491:264–8. 10.1038/nature11501
    1. Kahn NN, Bauman WA, Sinha AK. Appearance of a novel prostacyclin receptor antibody and duration of spinal cord injury. J Spinal Cord Med. (2005) 28:97–102. 10.1080/10790268.2005.11753805
    1. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol. (2007) 209:294–301. 10.1016/j.expneurol.2007.05.014
    1. Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. Functional regeneration beyond the glial scar. Exp Neurol. (2014) 253:197–207. 10.1016/j.expneurol.2013.12.024
    1. Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, et al. . Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci. (2013) 33:13882–7. 10.1523/JNEUROSCI.2524-13.2013
    1. Silver J. The glial scar is more than just astrocytes. Exp Neurol. (2016) 286:147–9. 10.1016/j.expneurol.2016.06.018
    1. Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal cord scar tissue. Science. (2011) 333:238–42. 10.1126/science.1203165
    1. Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci. (2018) 21:9–15. 10.1038/s41593-017-0033-9
    1. Dyck SM, Alizadeh A, Santhosh KT, Proulx EH, Wu CL, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans negatively modulate spinal cord neural precursor cells by signaling through LAR and RPTPsigma and modulation of the Rho/ROCK Pathway. Stem Cells. (2015) 33:2550–63. 10.1002/stem.1979
    1. Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci. (2002) 22:7526–35. 10.1523/JNEUROSCI.22-17-07526.2002
    1. Agrawal SM, Lau L, Yong VW. MMPs in the central nervous system: where the good guys go bad. Semin Cell Dev Biol. (2008) 19:42–51. 10.1016/j.semcdb.2007.06.003
    1. Wells JE, Rice TK, Nuttall RK, Edwards DR, Zekki H, Rivest S, et al. . An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J Neurosci. (2003) 23:10107–15. 10.1523/JNEUROSCI.23-31-10107.2003
    1. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci. (2003) 23:7789–800. 10.1523/JNEUROSCI.23-21-07789.2003
    1. Pasterkamp RJ, Giger RJ, Ruitenberg MJ, Holtmaat AJ, De Wit J, De Winter F, et al. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci. (1999) 13:143–66. 10.1006/mcne.1999.0738
    1. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, et al. . Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. (2010) 7:470–82. 10.1016/j.stem.2010.07.014
    1. Meletis K, Barnabé-Heider F, Carlén M, Evergren E, Tomilin N, Shupliakov O, et al. . Spinal cord injury reveals multilineage differentiation of ependymal cells. PloS Biol. (2008) 6:e182. 10.1371/journal.pbio.0060182
    1. Hughes EG, Kang SH, Fukaya M, Bergles DE. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci. (2013) 16:668–76. 10.1038/nn.3390
    1. Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, et al. . Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci. (2014) 11:344–8. 10.7150/ijms.8140
    1. Barrett CP, Guth L, Donati EJ, Krikorian JG. Astroglial reaction in the gray matter lumbar segments after midthoracic transection of the adult rat spinal cord. Exp Neurol. (1981) 73:365–77. 10.1016/0014-4886(81)90272-7
    1. Bignami A, Dahl D. The astroglial response to stabbing. immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurobiol. (1976) 2:99–110. 10.1111/j.1365-2990.1976.tb00488.x
    1. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, et al. . Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. (2013) 33:12870–86. 10.1523/JNEUROSCI.2121-13.2013
    1. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. (2004) 24:2143–55. 10.1523/JNEUROSCI.3547-03.2004
    1. Herrmann JE, Imura T, Qi BJ, Ao Y, Nguyen TK, Korsak RA, et al. . STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. Neurosci J. (2008) 28:7231–43. 10.1523/JNEUROSCI.1709-08.2008
    1. Yuan YM, He C. The glial scar in spinal cord injury and repair. Neurosci Bull. (2013) 29:421–35. 10.1007/s12264-013-1358-3
    1. Wiese S, Karus M, Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front Pharmacol. (2012) 3:120. 10.3389/fphar.2012.00120
    1. Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull. (2011) 84:306–16. 10.1016/j.brainresbull.2010.06.015
    1. Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev. (2007) 54:1–8. 10.1016/j.brainresrev.2006.09.006
    1. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. . Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. (2002) 416:636–40. 10.1038/416636a
    1. Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injury CNS. Neurosci J. (2003) 24:1416–23.
    1. Cafferty WB J, Yang S.-H, Duffy PJ, Li S, Strittmatter SM. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. Neurosci J. (2007) 27:2176–85. 10.1523/JNEUROSCI.5176-06.2007
    1. Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, et al. . Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp. Neurol. (2008) 209:426–445. 10.1016/j.expneurol.2007.03.029
    1. Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, et al. . Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. Neurosci J. (2009) 29:14881–90. 10.1523/JNEUROSCI.3641-09.2009
    1. Chen Z, Negra M, Levine A, Ughrin Y, Levine J. Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. Neurocytol J. (2002) 31:481–95.
    1. Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, et al. . Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. (2006) 26:10856–67. 10.1523/JNEUROSCI.2980-06.2006
    1. Massey JM, Hubscher CH, Wagoner MR, Decker JA, Amps J, Silver J, et al. . Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. Neurosci J. (2006) 26:4406–14. 10.1523/JNEUROSCI.5467-05.2006
    1. Alilain WJ, Horn KP, Hu H, Dick TE, Silver J. Functional regeneration of respiratory pathways after spinal cord injury. Nature. (2011) 475:196–200. 10.1038/nature10199
    1. Petrosyan HA, Hunanyan AS, Alessi V, Schnell L, Levine J, Arvanian VI. Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J Neurosci. (2013) 33:4032–43. 10.1523/JNEUROSCI.4702-12.2013
    1. Arvantan VI, Schnell I, Lou I, Golshant R, Hunanyan A, Ghosh A, et al. Chronic spinal hemisection in rats induces a progressive decline in transmission in uninjured fiber to motorneurons. Exp. Neurol. (2009) 216:471–80. 10.1016/j.expneurol.2009.01.004
    1. Hunanyan AS, García-Alías G, Alessi V, Levine JM, Fawcett JW, Mendell LM, et al. . Role of chondroitin sulfate proteoglycans in axonal conduction in Mammalian spinal cord. J Neurosci. (2010) 30:7761–9. 10.1523/JNEUROSCI.4659-09.2010
    1. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. Neurosci J. (2010) 30:1657–76. 10.1523/JNEUROSCI.3111-09.2010
    1. Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLos ONE. (2012) 7:1–16. 10.1371/journal.pone.0037589
    1. Pendleton JC, Shamblott MJ, Gary DS, Belegu V, Hurtado A, Malone ML, et al. . Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ. Exp Neurol. (2013) 247:113–21. 10.1016/j.expneurol.2013.04.003
    1. Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Doring A, Sloka S, et al. . Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. (2012) 72:419–32. 10.1002/ana.23599
    1. Larsen PH, Wells JE, Stallcup WB, Opdenakker G, Yong VW. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J Neurosci. (2003) 23:11127–35. 10.1523/JNEUROSCI.23-35-11127.2003
    1. Kurazono S, Okamoto M, Sakuyama J, Mori S, Nakata Y, Fukuoka J, et al. . Expression of brain specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the developing and adult hippocampus of Ihara's epileptic rats. Brain Res. (2001) 898:36–48. 10.1016/S0006-8993(01)02128-X
    1. Asher RA, Morgenstern DA, Shearer MC, Adcock KH, Pesheva P, Fawcett JW. Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. Neurosci J. (2002) 22:2225–36. 10.1523/JNEUROSCI.22-06-02225.2002
    1. Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, et al. . NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol. (2009) 9:32. 10.1186/1471-2377-9-32
    1. Schachtrup C, Ryu JK, Helmrick M, Vagena E, Galanakis DK, Degen JL, et al. fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-B after vascular damage. Neurosci J. (2010) 30:5843–54. 10.1523/JNEUROSCI.0137-10.2010
    1. Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M, et al. . Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science. (2011) 331:928–31. 10.1126/science.1201148
    1. Jahan N, Hannila SS. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways. Exp Neurol. (2014) 263:372–84. 10.1016/j.expneurol.2014.10.023
    1. Levine JM. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci. (1994) 14:4716–30.
    1. Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, et al. . Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci. (2000) 20:2427–38. 10.1523/JNEUROSCI.20-07-02427.2000
    1. Cafferty WBJ, Bradbury EJ, Lidierth M, Jones M, Duffy PJ, Pezet S, et al. . Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. Neurosci J. (2008) 28:11998–2009. 10.1523/JNEUROSCI.3877-08.2008
    1. Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. Neurosci J. (2011) 31:9332–44. 10.1523/JNEUROSCI.0983-11.2011
    1. Yick L, So K, Cheung P, Wu W. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury. Neurotrauma J. (2007) 21:932–943.
    1. Carter LM, McMahon SB, Bradbury EJ. Delayed treatment with chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury. Exp Neurol. (2011) 228:149–56. 10.1016/j.expneurol.2010.12.023
    1. Carter LM, Starkey ML, Akrimi SF, Davies M, McMahon SB, Bradbury EJ. The Yellow Fluorescent Protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. Neurosci J. (2008) 28:14107–20. 10.1523/JNEUROSCI.2217-08.2008
    1. Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM, Kawaguchi R, et al. . Astrocyte scar formation aids central nervous system axon regeneration. Nature. (2016) 532:195–200. 10.1038/nature17623
    1. Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol. (2012) 46:251–64. 10.1007/s12035-012-8287-4
    1. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. (2006) 7:617–27. 10.1038/nrn1956
    1. Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci. (2008) 28:9330–41. 10.1523/JNEUROSCI.2488-08.2008
    1. McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem. (2008) 107:1–19. 10.1111/j.1471-4159.2008.05570.x
    1. Wang Y, Cheng X, He Q, Zheng Y, Kim DH, Whittemore SR, et al. . Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. Neurosci J. (2011) 31:6053–8. 10.1523/JNEUROSCI.5524-09.2011
    1. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, et al. . Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature. (2015) 518:404–8. 10.1038/nature13974
    1. Fry EJ, Chagnon MJ, Lopez-Vales R, Tremblay ML, David S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia. (2010) 58:423–33. 10.1002/glia.20934
    1. McLean J, Batt J, Doering LC, Rotin D, Bain JR. Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase σ knock-out mice. J Neurosci. (2002) 22:5481–91. 10.1523/JNEUROSCI.22-13-05481.2002
    1. Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, et al. . Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. Neurosci J. (2011) 31:14051–66. 10.1523/JNEUROSCI.1737-11.2011
    1. Dyck SM, Karimi-Abdolrezaee S. Role of chondroitin sulfate proteoglycan signaling in regulating neuroinflammation following spinal cord injury. Neural Regen Res. (2018) 13:2080–2. 10.4103/1673-5374.241452
    1. Stephenson EL, Mishra MK, Moussienko D, Laflamme N, Rivest S, Ling CC, et al. . Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain. (2018) 141:1094–110. 10.1093/brain/awy033
    1. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, et al. . Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. (2008) 5:e171. 10.1371/journal.pmed.0050171
    1. Rolls A, Cahalon L, Bakalash S, Avidan H, Lider O, Schwartz M. A sulfated disaccharide derived from chondroitn sulfate proteoglycan protects agast inflammation-associated neurodegeneration. FASEB J. (2006) 20:547–9. 10.1096/fj.05-4540fje

Source: PubMed

3
Předplatit