Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies

Lucas Fernando Sérgio Gushiken, Fernando Pereira Beserra, Jairo Kenupp Bastos, Christopher John Jackson, Cláudia Helena Pellizzon, Lucas Fernando Sérgio Gushiken, Fernando Pereira Beserra, Jairo Kenupp Bastos, Christopher John Jackson, Cláudia Helena Pellizzon

Abstract

The skin is the biggest organ of human body which acts as a protective barrier against deleterious agents. When this barrier is damaged, the organism promotes the healing process with several molecular and cellular mechanisms, in order to restore the physiological structure of the skin. The physiological control of wound healing depends on the correct balance among its different mechanisms. Any disruption in the balance of these mechanisms can lead to problems and delay in wound healing. The impairment of wound healing is linked to underlying factors as well as aging, nutrition, hypoxia, stress, infections, drugs, genetics, and chronic diseases. Over the years, numerous studies have been conducted to discover the correct approach and best therapies for wound healing, including surgical procedures and non-surgical treatments such as topical formulations, dressings, or skin substitutes. Thus, this general approach is necessary to facilitate the direction of further studies. This work provides updated concepts of physiological mechanisms, the factors that can interfere, and updated treatments used in skin wound healing.

Keywords: dressings; skin; skin substitutes; topical formulation; wound healing; wound therapies.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Phases of physiological wound healing. Inflammatory phase: there is the hemostasis of wounded area and acute inflammation through the release of cytokines, growth factors and the migration of leukocytes in the area. Proliferative phase: increase in the migration and proliferation of the keratinocytes, fibroblasts, endothelial cells and leukocytes in the wound. Increase in the synthesis of extracellular matrix components and improve of angiogenesis and re-epithelialization mechanisms. Remodeling phase: extracellular matrix remodeling, with substitution of collagen III for collagen I. Increase in the activity of MMPs. Apoptosis of provisional endothelial cells, fibroblasts, and myofibroblasts of the injury.
Figure 2
Figure 2
Factors that affect wound healing. Common situations that delay skin wound healing.

References

    1. Proksch E., Brandner J.M., Jensen J.-M. The skin: An indispensable barrier. Exp. Dermatol. 2008;17:1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x.
    1. Man E., Hoskins C. Towards advanced wound regeneration. Eur. J. Pharm. Sci. 2020;149:105360. doi: 10.1016/j.ejps.2020.105360.
    1. Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal. 2016:103–120. doi: 10.1007/s12079-016-0330-1.
    1. Wang P.-H., Huang B.-S., Horng H.-C., Yeh C.-C., Chen Y.-J. Wound healing. J. Chin. Med. Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002.
    1. Singer A.J., Clark R.A.F. Cutaneous wound healing. N. Engl. J. Med. 1999;341:738–746. doi: 10.1056/NEJM199909023411006.
    1. Rodrigues M., Kosaric N., Bonham C.A., Gurtner G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019;99:665–706. doi: 10.1152/physrev.00067.2017.
    1. Larouche J., Sheoran S., Maruyama K., Martino M.M. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv. Wound Care. 2018;7:209–231. doi: 10.1089/wound.2017.0761.
    1. Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613.
    1. Holloway S., Harding K., Stechmiller J., Schultz G. Acute and Chronic Wound Healing. In: Baranoski S., Ayello E., editors. Wound Care Essentials—Practice Principles. 3rd ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2011. pp. 83–100.
    1. Tottoli E.M., Dorati R., Genta I., Chiesa E., Pisani S., Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12:735. doi: 10.3390/pharmaceutics12080735.
    1. Veith A.P., Henderson K., Spencer A., Sligar A.D., Baker A.B. Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Adv. Drug Deliv. Rev. 2019;146:97–125. doi: 10.1016/j.addr.2018.09.010.
    1. Tomic-Canic M., Wong L.L., Smola H. The epithelialisation phase in wound healing: Options to enhance wound closure. J. Wound Care. 2018;27:646–658. doi: 10.12968/jowc.2018.27.10.646.
    1. Bennett S.P., Griffiths G.D., Schor A.M., Leese G.P., Schor S.L. Growth factors in the treatment of diabetic foot ulcers. Br. J. Surg. 2003;90:133–146. doi: 10.1002/bjs.4019.
    1. Karppinen S.-M., Heljasvaara R., Gullberg D., Tasanen K., Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Research. 2019;8 doi: 10.12688/f1000research.18293.1.
    1. Martins V.L., Caley M., O’Toole E.A. Matrix metalloproteinases and epidermal wound repair. Cell Tissue Res. 2013;351:255–268. doi: 10.1007/s00441-012-1410-z.
    1. Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014;6:265sr6. doi: 10.1126/scitranslmed.3009337.
    1. Eming S.A., Krieg T., Davidson J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Investig. Dermatol. 2007;127:514–525. doi: 10.1038/sj.jid.5700701.
    1. Zhao R., Liang H., Clarke E., Jackson C., Xue M. Inflammation in chronic wounds. Int. J. Mol. Sci. 2016;17:2085. doi: 10.3390/ijms17122085.
    1. Nosenko M.A., Ambaryan S.G., Drutskaya M.S. Proinflammatory Cytokines and Skin Wound Healing in Mice. Mol. Biol. 2019;53:653–664. doi: 10.1134/S0026893319050121.
    1. Demidova-Rice T.N., Hamblin M.R., Herman I.M. Acute and impaired wound healing: Pathophysiology and current methods for drug delivery, part 1: Normal and chronic wounds: Biology, causes, and approaches to care. Adv. Ski. Wound Care. 2012;25:304–314. doi: 10.1097/01.ASW.0000416006.55218.d0.
    1. Sanchez M.C., Lancel S., Boulanger E., Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants. 2018;7:98. doi: 10.3390/antiox7080098.
    1. Kwon M.-J., Kim B., Lee Y.S., Kim T.-Y. Role of superoxide dismutase 3 in skin inflammation. J. Dermatol. Sci. 2012;67:81–87. doi: 10.1016/j.jdermsci.2012.06.003.
    1. Menke N.B., Ward K.R., Witten T.M., Bonchev D.G., Diegelmann R.F. Impaired wound healing. Clin. Dermatol. 2007;25:19–25. doi: 10.1016/j.clindermatol.2006.12.005.
    1. Hamidzadeh K., Christensen S.M., Dalby E., Chandrasekaran P., Mosser D.M. Macrophages and the Recovery from Acute and Chronic Inflammation. Annu. Rev. Physiol. 2018;79:567–592. doi: 10.1146/annurev-physiol-022516-034348.
    1. Okonkwo U.A., Dipietro L.A. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017;18:1419. doi: 10.3390/ijms18071419.
    1. Serra M.B., Barroso W.A., Da Silva N.N., Silva S.D.N., Borges A.C.R., Abreu I.C., Borges M.O.D.R. From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int. J. Inflamm. 2017;2017:3406215. doi: 10.1155/2017/3406215.
    1. Hakkinen L., Koivisto L., Gardner H., Saarialho-Kere U., Carroll J.M., Lakso M., Rauvala H., Laato M., Heino J., Larjava H. Increased Expression of β6-Integrin in Skin Leads to Spontaneous Development of Chronic Wounds. Am. J. Pathol. 2004;164:229–242. doi: 10.1016/S0002-9440(10)63113-6.
    1. Stojadinovic O., Brem H., Vouthounis C., Lee B., Fallon J., Stallcup M., Merchant A., Galiano R.D., Tomic-canic M. Molecular Pathogenesis of Chronic Wounds—The role of b-catenin and c-myc in the inhibition of epithelialization and wound healing. Am. J. Pathol. 2005;167:59–69. doi: 10.1016/S0002-9440(10)62953-7.
    1. Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473.
    1. Stojadinovic O., Pastar I., Nusbaum A.G., Vukelic S., Krzyzanowska A., Tomic-Canic M. Deregulation of epidermal stem cell niche contributes to pathogenesis of non-healing venous ulcers. Wound Repair Regen. 2014;22:220–227. doi: 10.1111/wrr.12142.
    1. Usui M.L., Mansbridge J.N., Carter W.G., Fujita M., Olerud J.E. Keratinocyte Migration, Proliferation, and Differentiation in Chronic Ulcers From Patients With Diabetes and Normal Wounds. J. Histochem. Cytochem. 2008;56:687–696. doi: 10.1369/jhc.2008.951194.
    1. Mast B.A., Schultz G.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411–420. doi: 10.1046/j.1524-475X.1996.40404.x.
    1. Krishnaswamy V.R., Mintz D., Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BBA Mol. Cell Res. 2017;1864:2220–2227. doi: 10.1016/j.bbamcr.2017.08.003.
    1. Guo S., Dipietro L.A. Factors affecting wound healing. J. Dent. Res. 2010;89:219–229. doi: 10.1177/0022034509359125.
    1. Darby I.A., Hewitson T.D. Hypoxia in tissue repair and fibrosis. Cell Tissue Res. 2016;365:553–562. doi: 10.1007/s00441-016-2461-3.
    1. Bishop A. Role of oxygen in wound healing. J. Wound Care. 2008;17:399–402. doi: 10.12968/jowc.2008.17.9.30937.
    1. Beyene R.T., Derryberry S.L., Barbul A. The Effect of Comorbidities on Wound Healing. Surg. Clin. N. Am. 2020;100:695–705. doi: 10.1016/j.suc.2020.05.002.
    1. Singh S., Young A., McNaught C.E. The physiology of wound healing. Surgery. 2014;32:445–450. doi: 10.1016/j.mpsur.2017.06.004.
    1. Wild T., Rahbarnia A., Kellner M., Sobotka L., Eberlein T. Basics in nutrition and wound healing. Nutrition. 2010;26:862–866. doi: 10.1016/j.nut.2010.05.008.
    1. Edwards R., Harding K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004;17:91–96. doi: 10.1097/00001432-200404000-00004.
    1. Takahashi A., Flanigan M.E., McEwen B.S., Russo S.J. Aggression, social stress, and the immune system in humans and animal models. Front. Behav. Neurosci. 2018;12:56. doi: 10.3389/fnbeh.2018.00056.
    1. Horng H.C., Chang W.H., Yeh C.C., Huang B.S., Chang C.P., Chen Y.J., Tsui K.H., Wang P.H. Estrogen effects on wound healing. Int. J. Mol. Sci. 2017;18:2325. doi: 10.3390/ijms18112325.
    1. Gilliver S.C., Ashworth J.J., Ashcroft G.S. The hormonal regulation of cutaneous wound healing. Clin. Dermatol. 2007;25:56–62. doi: 10.1016/j.clindermatol.2006.09.012.
    1. Sen C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care. 2019;8:39–48. doi: 10.1089/wound.2019.0946.
    1. Avishai E., Yeghiazaryan K., Golubnitschaja O. Impaired wound healing: Facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J. 2017;8:23–33. doi: 10.1007/s13167-017-0081-y.
    1. Franz M.G., Steed D.L., Robson M.C. Optimizing Healing of the Acute Wound by Minimizing Complications. Curr. Probl. Surg. 2007;44:691–763. doi: 10.1067/j.cpsurg.2007.07.001.
    1. Krischak G.D., Augat P., Claes L., Kinzl L., Beck A. The effects of non-steroidal anti-inflammatory drug application on incisional wound healing in rats. J. Wound Care. 2007;16:76–78. doi: 10.12968/jowc.2007.16.2.27001.
    1. Beahrs T.R., Reagan J., Bettin C.C., Grear B.J., Murphy G.A., Richardson D.R. Smoking Effects in Foot and Ankle Surgery: An Evidence-Based Review. Foot Ankle Int. 2019;40:1226–1232. doi: 10.1177/1071100719867942.
    1. Andrews J.P., Marttala J., Macarak E., Rosenbloom J., Uitto J. Keloids: The paradigm of skin fibrosis—Pathomechanisms and treatment. Matrix Biol. 2016;51:37–46. doi: 10.1016/j.matbio.2016.01.013.
    1. Malfait F., Wenstrup R.J., Paepe A. De Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet. Med. 2010;12:597–605. doi: 10.1097/GIM.0b013e3181eed412.
    1. Knaup J., Verwanger T., Gruber C., Ziegler V., Bauer J.W., Krammer B. Epidermolysis bullosa—A group of skin diseases with different causes but commonalities in gene expression. Exp. Dermatol. 2012;21:526–530. doi: 10.1111/j.1600-0625.2012.01519.x.
    1. Monavarian M., Kader S., Moeinzadeh S., Jabbari E. Regenerative Scar-Free Skin Wound Healing. Tissue Eng. Part B Rev. 2019;25:294–311. doi: 10.1089/ten.teb.2018.0350.
    1. Rennert R.C., Rodrigues M., Wong V.W., Duscher D., Hu M., Maan Z., Sorkin M., Gurtner G.C., Longaker M.T. Biological therapies for the treatment of cutaneous wounds: Phase III and launched therapies. Expert Opin. Biol. Ther. 2013;13:1523–1541. doi: 10.1517/14712598.2013.842972.
    1. Ferrario C., Rusconi F., Pulaj A., Landini P., Paroni M., Colombo G., Martinello T., Melotti L., Gomiero C., Carnevali M.D.C., et al. From Food Waste to Innovative Biomaterial: Sea Urchin-Derived Collagen for Applications in Skin Regenerative Medicine. Mar. Drugs. 2020;18:414. doi: 10.3390/md18080414.
    1. Varkey M., Ding J., Tredget E.E. Advances in skin substitutes-potential of tissue engineered skin for facilitating anti-fibrotic healing. J. Funct. Biomater. 2015;6:547–563. doi: 10.3390/jfb6030547.
    1. Lumbers M. Wound debridement: Choices and practice. Br. J. Nurs. 2018;27:S16–S20. doi: 10.12968/bjon.2018.27.15.S16.
    1. Honrado C.P., Murakami C.S. Wound healing and physiology of skin flaps. Facial Plast. Surg. Clin. N. Am. 2005;13:203–214. doi: 10.1016/j.fsc.2004.11.007.
    1. Molnar A., Magyar Z., Nachmias D.B., Mann D., Szabo B., Toth L., Nemeth N. Effect of short-term ischemia on microcirculation and wound healing of adipocutaneous flaps in the rat. Acta Cir. Bras. 2019;34:e201901203. doi: 10.1590/s0102-865020190120000003.
    1. Lucas J.B. The Physiology and Biomechanics of Skin Flaps. Facial Plast. Surg. Clin. N. Am. 2017;25:303–311. doi: 10.1016/j.fsc.2017.03.003.
    1. Powers J.G., Higham C., Broussard K., Phillips T.J. Wound healing and treating wounds: Chronic wound care and management. J. Am. Acad. Dermatol. 2016;74:607–625. doi: 10.1016/j.jaad.2015.08.070.
    1. Singla V., Saini S., Joshi B., Rana A.C. Emulgel: A new platform for topical drug delivery. Int. J. Pharma Bio Sci. 2012;3:P485–P498.
    1. Öhnstedt E., Lofton Tomenius H., Vågesjö E., Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin. Drug Discov. 2019;14:485–497. doi: 10.1080/17460441.2019.1588879.
    1. Bhowmik D., Gopinath H., Kumar B.P., Duraivel S., Kumar K.P.S. Recent Advances in Novel Topical Drug Delivery System. Pharma Innov. J. 2012;1:12–31.
    1. Ueda C., Shah V., Derdzinski K., Ewing G., Flynn G., Maibach H., Marques M., Rytting H., Shaw S., Thakker K., et al. Topical and Transdermal Drug Products. Pharmacop. Forum. 2009;35:750–764. doi: 10.14227/DT170410P12.
    1. Bonomo R.A., Van Zile P.S., Li Q., Shermock K.M., Mccormick W.G., Kohut B. Topical triple-antibiotic ointment as a novel therapeutic choice in wound management and infection prevention: A practical perspective. Expert Rev. Anti-Infect. Ther. 2007;5:773–782. doi: 10.1586/14787210.5.5.773.
    1. Ward R.S., Saffle J.R. Topical agents in burn and wound care. Phys. Ther. 1995;75:526–538. doi: 10.1093/ptj/75.6.526.
    1. Smack D.P., Harrington A.C., Dunn C., Howard R.S., Szkutnik A.J., Krivda S.J., Caldwell J.B., James W.D. Infection and allergy incidence in ambulatory surgery patients using white petrolatum vs. bacitracin ointment: A randomized controlled trial. JAMA. 1996;276:972–977. doi: 10.1001/jama.1996.03540120050033.
    1. Ebner F., Heller A., Rippke F., Tausch I. Topical use of dexpanthenol in skin disorders. Am. J. Clin. Dermatol. 2002;3:427–433. doi: 10.2165/00128071-200203060-00005.
    1. Gorski J., Proksch E., Baron J.M., Schmid D., Zhang L. Dexpanthenol in wound healing after medical and cosmetic interventions (Postprocedure wound healing) Pharmaceuticals. 2020;13:138. doi: 10.3390/ph13070138.
    1. Palmieri B., Magri M. A New Formulation of Collagenase Ointment (Iruxol ® Mono ) in the Treatment of Ulcers of the Lower Extremities A Randomised, Placebo-Controlled, Double-Blind Study. Clin. Drug Investig. 1998;15:381–387. doi: 10.2165/00044011-199815050-00002.
    1. Pan A., Zhong M., Wu H., Peng Y., Xia H., Tang Q., Huang Q., Wei L., Xiao L., Peng C. Topical Application of Keratinocyte Growth Factor Conjugated Gold Nanoparticles Accelerate Wound Healing. Nanomed. Nanotechnol. Biol. Med. 2018;14:1619–1628. doi: 10.1016/j.nano.2018.04.007.
    1. Li S., Tang Q., Xu H., Huang Q., Wen Z., Liu Y., Peng C. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy. Nanomedicine. 2019;14:2909–2923. doi: 10.2217/nnm-2018-0487.
    1. Waycaster C.R., Gilligan A.M., Motley T.A. Cost-Effectiveness of Becaplermin Gel on Diabetic Foot Ulcer Healing. J. Am. Podiatr. Med. Assoc. 2016;106:273–282. doi: 10.7547/15-004.
    1. Xu K., Chai B., Zhang K., Xiong J., Zhu Y., Xu J., An N., Xia W., Ji H., Wu Y., et al. Topical Application of Fibroblast Growth Factor 10-PLGA Microsphere Accelerates Wound Healing via Inhibition of ER Stress. Oxid. Med. Cell. Longev. 2020;2020:8586314. doi: 10.1155/2020/8586314.
    1. Boateng J.S., Matthews K.H., Stevens H.N.E., Eccleston G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008;97:2892–2923. doi: 10.1002/jps.21210.
    1. Souto E.B., Ribeiro A.F., Ferreira M.I., Teixeira M.C., Shimojo A.A.M., Soriano J.L., Naveros B.C., Durazzo A., Lucarini M., Souto S.B., et al. New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci. 2020;21:393. doi: 10.3390/ijms21020393.
    1. Chen T., Chen Y., Rehman H.U., Chen Z., Yang Z., Wang M., Li H., Liu H. Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing. ACS Appl. Mater. Interfaces. 2018;10:33523–33531. doi: 10.1021/acsami.8b10064.
    1. Jian Z., Wang H., Liu M., Chen S., Wang Z., Qian W., Luo G., Xia H. Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. Mater. Sci. Eng. C. 2020;111:110833. doi: 10.1016/j.msec.2020.110833.
    1. Zhao X., Liu L., An T., Xian M., Luckanagul J.A., Su Z., Lin Y., Wang Q. A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater. 2020;104:85–94. doi: 10.1016/j.actbio.2019.12.032.
    1. Oba J., Okabe M., Yoshida T., Soko C., Fathy M., Amano K., Kobashi D., Wakasugi M., Okudera H. Hyperdry human amniotic membrane application as a wound dressing for a full-thickness skin excision after a third-degree burn injury. Burn. Trauma. 2020;8:tkaa014. doi: 10.1093/burnst/tkaa014.
    1. Eskandarinia A., Kefayat A., Gharakhloo M., Agheb M., Khodabakhshi D., Khorshidi M., Sheikhmoradi V., Rafienia M., Salehi H. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int. J. Biol. Macromol. 2020;149:467–476. doi: 10.1016/j.ijbiomac.2020.01.255.
    1. Jeffery S., Henry N., Radotra I. Properties and use of a honey dressing and gel in wound management. Br. J. Nurs. 2019;28:S30–S35. doi: 10.12968/bjon.2019.28.6.s30.
    1. Yu K., Lu F., Li Q., Zou Y., Xiao Y., Lu B., Liu J., Dai F., Wu D., Lan G. Accelerated wound-healing capabilities of a dressing fabricated from silkworm cocoon. Int. J. Biol. Macromol. 2017;102:901–913. doi: 10.1016/j.ijbiomac.2017.04.069.
    1. Hassan M.A., Tamer T.M., Valachová K., Omer A.M., El-Shafeey M., Mohy Eldin M.S., Šoltés L. Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. Int. J. Biol. Macromol. 2021;166:18–31. doi: 10.1016/j.ijbiomac.2020.11.119.
    1. Chen S., Wang H., Jian Z., Fei G., Qian W., Luo G., Wang Z., Xia H. Novel Poly(vinyl alcohol)/Chitosan/Modified Graphene Oxide Biocomposite for Wound Dressing Application. Macromol. Biosci. 2020;20:e1900385. doi: 10.1002/mabi.201900385.
    1. Tort S., Demiröz F.T., Coşkun Cevher Ş., Sarıbaş S., Özoğul C., Acartürk F. The effect of a new wound dressing on wound healing: Biochemical and histopathological evaluation. Burns. 2020;46:143–155. doi: 10.1016/j.burns.2019.02.013.
    1. Peng J., Zhao H., Tu C., Xu Z., Ye L., Zhao L., Gu Z., Zhao D., Zhang J., Feng Z. In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. Mater. Sci. Eng. C. 2020;116:111169. doi: 10.1016/j.msec.2020.111169.
    1. Kim J., Lee K., Han S.H., Ko E.A., Yoon D.S., Park I.K., Shin H., Park K.H., Lee J.W. Development of stabilized dual growth factor-loaded hyaluronate collagen dressing matrix. J. Tissue Eng. 2021;12:2041731421999750. doi: 10.1177/2041731421999750.
    1. Zhang K., Li Y., He J., Xu J., Wan Y., Wan S., Wang R., Zeng Q. Therapeutic Effect of Epidermal Growth Factor Combined With Nano Silver Dressing on Diabetic Foot Patients. Front. Pharmacol. 2021;12:627098. doi: 10.3389/fphar.2021.627098.
    1. Cheng Y., Li Y., Huang S., Yu F., Bei Y., Zhang Y., Tang J., Huang Y., Xiang Q. Hybrid Freeze-Dried Dressings Composed of Epidermal Growth Factor and Recombinant Human-Like Collagen Enhance Cutaneous Wound Healing in Rats. Front. Bioeng. Biotechnol. 2020;8:742. doi: 10.3389/fbioe.2020.00742.
    1. Lee Y.-H., Hong Y.-L., Wu T.-L. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Mater. Sci. Eng. C. 2020;118:111385. doi: 10.1016/j.msec.2020.111385.
    1. Lin X., Guan X., Wu Y., Zhuang S., Wu Y., Du L., Zhao J., Rong J., Zhao J., Tu M. An alginate/poly(N-isopropylacrylamide)-based composite hydrogel dressing with stepwise delivery of drug and growth factor for wound repair. Mater. Sci. Eng. C. 2020;115:111123. doi: 10.1016/j.msec.2020.111123.
    1. Nicholas M.N., Jeschke M.G., Amini-Nik S. Methodologies in creating skin substitutes. Cell. Mol. Life Sci. 2016;73:3453–3472. doi: 10.1007/s00018-016-2252-8.
    1. Da L.-C., Huang Y.-Z., Xie H.-Q. Progress in development of bioderived materials for dermal wound healing. Regen. Biomater. 2017;4:325–334. doi: 10.1093/rb/rbx025.
    1. Mulholland E.J. Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing. Front. Bioeng. Biotechnol. 2020;8:481. doi: 10.3389/fbioe.2020.00481.
    1. Dixit S., Baganizi D.R., Sahu R., Dosunmu E., Chaudhari A., Vig K., Pillai S.R., Singh S.R., Dennis V.A. Immunological challenges associated with artificial skin grafts: Available solutions and stem cells in future design of synthetic skin. J. Biol. Eng. 2017;11:49. doi: 10.1186/s13036-017-0089-9.
    1. Goodarzi P., Falahzadeh K., Nematizadeh M., Farazandeh P., Payab M., Larijani B., Beik A.T., Arjmand B. Tissue Engineered Skin Substitutes. Adv. Exp. Med. Biol. 2018;1107:143–188.
    1. Millán-Rivero J.E., Martínez C.M., Romecín P.A., Aznar-Cervantes S.D., Carpes-Ruiz M., Cenis J.L., Moraleda J.M., Atucha N.M., García-Bernal D. Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res. Ther. 2019;10:126. doi: 10.1186/s13287-019-1229-6.
    1. Piejko M., Radziun K., Bobis-Wozowicz S., Waligórska A., Zimoląg E., Nessler M., Chrapusta A., Madeja Z., Drukała J. Adipose-Derived Stromal Cells Seeded on Integra® Dermal Regeneration Template Improve Post-Burn Wound Reconstruction. Bioengineering. 2020;7:67. doi: 10.3390/bioengineering7030067.
    1. Ababzadeh S., Farzin A., Goodarzi A., Karimi R., Sagharjoghi Farahani M., Eslami Farsani M., Gharibzad K., Zahiri M., Ai J. High porous electrospun poly(ε-caprolactone)/gelatin/MgO scaffolds preseeded with endometrial stem cells promote tissue regeneration in full-thickness skin wounds: An in vivo study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020;108:2961–2970. doi: 10.1002/jbm.b.34626.
    1. Groeber F., Holeiter M., Hampel M., Hinderer S., Schenke-layland K. Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 2011;63:352–366. doi: 10.1016/j.addr.2011.01.005.
    1. Curran M.P., Plosker G.L. Bilayered bioengineered skin substitute (Apligraf): A review of its use in the treatment of venous leg ulcers and diabetic foot ulcers. BioDrugs. 2002;16:439–455. doi: 10.2165/00063030-200216060-00005.
    1. Still J., Glat P., Silverstein P., Griswold J., Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns. 2003;29:837–841. doi: 10.1016/S0305-4179(03)00164-5.

Source: PubMed

3
Předplatit