Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights

Jung Min Cho, Jisuk Chae, Sa Rang Jeong, Min Jung Moon, Dong Yeob Shin, Jong Ho Lee, Jung Min Cho, Jisuk Chae, Sa Rang Jeong, Min Jung Moon, Dong Yeob Shin, Jong Ho Lee

Abstract

[NCT03677921]; www.clinicaltrials.gov [KCT0002726]; https://cris.nih.go.kr.

Conflict of interest statement

This work was supported by the New Drug Discovery Fund of Geranti Pharmaceutical and was supervised by a contract research organization (CRO, NeoNutra Co., Ltd). This financial support does not alter our adherence to PLOS ONE’s policies concerning sharing data and materials. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. In particular, the funder never invited, offered or guaranteed opportunities in employment, consultancy, patent registration, product development or any other related capacities to any of the authors of this study. The CRO supervised and managed with strict vigilance all stages of the clinical trial process to ensure that the laws, regulations and international standards designed for data integrity were maintained.

Figures

Fig 1. Flow diagram of subject randomization.
Fig 1. Flow diagram of subject randomization.
1 Completed the clinical trial without major protocol violations.
Fig 2. Comparison of NK cell cytotoxicity…
Fig 2. Comparison of NK cell cytotoxicity Δ values before and after supplementation.
The data represent the mean ± standard error. Δ represents the change from baseline at follow-up. **P<0.01 and ***P<0.001 values were derived from adjusted baseline ANCOVA for Δ between groups.
Fig 3. Comparison of immunoglobulin G1, G2…
Fig 3. Comparison of immunoglobulin G1, G2 and M Δ values before and after supplementation.
The data represent the mean ± standard error. Δ represents the change from baseline at follow-up. *P<0.05 value was derived from an independent t-test for Δ between groups.

References

    1. Lee J-S, Park J-I, Kim S-H, Park S-H, Kang S-k, Park C-B, et al. Oral single-and repeated-dose toxicity studies on Geranti Bio-Ge yeast®, organic germanium fortified yeasts, in rats. J Toxicol Sci. 2004;29(5):541–53. 10.2131/jts.29.541
    1. Baek D-H, Jung J-W, Sohn T-U, Kang J-K. Germanium-Fortified Yeast Activates Macrophage, NK Cells and B Cells and Inhibits Tumor Progression in Mice. Microbiol Biotechnol Lett. 2007;35(2):118–27.
    1. Jao S-W, Lee W, Ho Y-S. Effect of germanium on 1, 2-dimethylhydrazine-induced intestinal cancer in rats. Dis Colon Rectum. 1990;33(2):99–104. 10.1007/BF02055535
    1. Yang F, Jin H, Pi J, Jiang J-h, Liu L, Bai H-h, et al. Anti-tumor activity evaluation of novel chrysin–organogermanium (IV) complex in MCF-7 cells. Bioorg Med Chem Lett. 2013;23(20):5544–51. 10.1016/j.bmcl.2013.08.055
    1. Suzuki F. Antitumor activity of Ge-132, a new organogermanium compound, in mice is expressed through the functions of macrophages and T lymphocytes. Gan To Kagaku Ryoho. 1985;12(7):1445–52.
    1. Yang MK, Kim YG. Protective role of germanium-132 against paraquat-induced oxidative stress in the livers of senescence-accelerated mice. J Toxicol Environ Health A. 1999;58(5):289–97. 10.1080/009841099157250
    1. Wu Z, Chen X, Yang K, Xia T. Studies on the hydroxyl free radical-scavenging effect of combined selenium and germanium. Wei Sheng Yan Jiu. 2001;30(4):208–10.
    1. Aso H, Suzuki F, Ebina T, Ishida N. Antiviral activity of carboxyethylgermanium sesquioxide (Ge-132) in mice infected with influenza virus. J Biol Response Mod. 1989;8(2):180–9.
    1. DiMartino M, Lee J, Badger A, Muirhead K, Mirabelli C, Hanna N. Antiarthritic and immunoregulatory activity of spirogermanium. J Pharmacol Exp Ther. 1986;236(1):103–10.
    1. Lee J, Kim K, Yoon M, Lee J, Kim C, Sim S. Anti‐inflammatory effect of germanium‐concentrated yeast against paw oedema is related to the inhibition of arachidonic acid release and prostaglandin E2 production in RBL 2H3 cells. Auton Autacoid Pharmacol. 2005;25(4):129–34. 10.1111/j.1474-8673.2005.00335.x
    1. Suzuki F, Brutkiewicz R, Pollard R. Importance of T-cells and macrophages in the antitumor activity of carboxyethylgermanium sesquioxide (Ge-132). Anticancer Res. 1985;5(5):479–83.
    1. Badawi A, Hafiz A. Synthesis and immunomodulatory activity of some novel amino acid germinates. J Iran Chem Soc. 2007;4(1):107–13.
    1. Badger AM, Mirabelli CK, DiMartino M. Generation of suppressor cells in normal rats by treatment with spirogermanium, a novel heterocyclic anticancer drug. Immunopharmacology. 1985;10(3):201–7. 10.1016/0162-3109(85)90026-8
    1. Nakamura T, Takeda T, Tokuji Y. The oral intake of organic germanium, Ge-132, elevates α-Tocopherol levels in the Plas-ma and modulates hepatic gene expression profiles to promote immune activation in mice. Int J Vitam Nutr Res Suppl. 2015;84(3–4):0183–95.
    1. Suzuki F, Brutkiewicz R, Pollard R. Cooperation of lymphokine(s) and macrophages in expression of antitumor activity of carboxyethylgermanium sesquioxide (Ge-132). Anticancer Res. 1986;6(2):177–82.
    1. Mizushima M, Satoh H, Miyao K, editors. Some pharmacological and clinical aspects of a novel organic germanium compound Ge-132. 1st International Conference on Germanium; 1984; Hanover.
    1. Orimo H, Akiguchi T. Effect of Ge-132 on senile osteoporosis. Igaku to Yakugaku. 1983;9:1507–9.
    1. Fukazawa H, Ohashi Y, Sekiyama S, Hoshi H, Abe M, Takahashi M, et al. Multidisciplinary treatment of head and neck cancer using BCG, OK‐432, and GE‐132 as biologic response modifiers. Head & neck. 1994;16(1):30–8.
    1. Dozono H, Ikeda K, Onishi T. Effectiveness of Ge-132 to relieve pain and smooth home care administration for the terminal cancer patient. Gan to Kagaku Ryoho. 1996;23:291–5.
    1. Mainwaring MG, Poor C, Harman E, Zander DS. Complete remission of pulmonary spindle cell carcinoma after treatment with oral germanium sesquioxide. Chest. 2000;117(2):591–3. 10.1378/chest.117.2.591
    1. Tsutsumi Y, Tanaka J, Kanamori H, Musashi M, Minami H, Fukushima A, et al. Effectiveness of propagermanium treatment in multiple myeloma patients. Eur J Haematol. 2004;73(6):397–401. 10.1111/j.1600-0609.2004.00330.x
    1. Aso H, Suzuki F, YAMAGUCHT T, Hayashi Y, Ebina T, Ishida N. Induction of interferon and activation of NK cells and macrophages in mice by oral administration of Ge-132, an organic germanium compound. Microbiology and immunology. 1985;29(1):65–74. 10.1111/j.1348-0421.1985.tb00803.x
    1. Ikemoto K, Kobayashi M, Fukumoto T, Morimatsu M, Pollard RB, Suzuki F. 2-Carboxyethylgermanium sesquioxide, a synthetic organogermanium compound, as an inducer of contrasuppressor T cells. Experientia. 1996;52(2):159–66. 10.1007/BF01923363
    1. KUWABARA M, OHBA S, YUKAWA M. Effect of germanium, poly-trans-[2-carboxyethyl] germasesquioxane on natural killer (NK) activity in dogs. Journal of veterinary medical science. 2002;64(8):719–21. 10.1292/jvms.64.719
    1. MUNAKATA T, ARAI S, KUWANO K, FURUKAWA M, TOMITA Y. Induction of Interferon Production by Natural Killer Cells by Organogermanium Compound, Gel32. J Interferon Res. 1987;7(1):69–76. 10.1089/jir.1987.7.69
    1. Takahashi I, Fukumoto M, Inagaki N, Ueda I, Nishimura M, Aoyama S, et al. Effects of interferon and its inducers on neutrophil chemiluminescence. Gan to Kagaku Ryoho. 1984;11(7):1439–43.
    1. Tanaka N, Ohida J, Ono M, Yoshiwara H, Beika T, Terasawa A, et al. Augmentation of NK activity in peripheral blood lymphocytes of cancer patients by intermittent Ge-132 administration. Gan to Kagaku Ryoho. 1984;11(6):1303–6.
    1. Hirayama C, Suzuki H, Ito M, Okumura M, Oda T. Propagermanium: a nonspecific immune modulator for chronic hepatitis B. J Gastroenterol. 2003;38(6):525–32. 10.1007/s00535-003-1098-7
    1. Lee S-H, Lee S-K, Lee H-J, Yi Y-S, Park E-W. Study on Identification and Purification of Germanium-fortified Yeast. J Korean Soc Appl Biol Chem. 2006;49(1):55–9.
    1. Lee S-H, Ahn S-D, Rho S-N, Sohn T-U. A study on preparation and binding properties of germanium-fortified yeast. J Korean Soc Appl Biol Chem. 2005;48(4):382–7.
    1. Kim S-Y, Kim M-H, Woo H-G, Kim B-H, Sohn T-U, Jung J-W, et al. Qualitative Analysis of GeO2 in Germanium-Fortified Yeast. Microbiol Biotechnol Lett. 2007;35(2):163–72.
    1. Lee J-S, Park J-I, Kim S-H, Lee H-Y, Hwang Z-Z, Park C-B, et al. Oral single-and repeated-dose toxicity studies on geranti Bio-Ge yeast®, organic germanium fortified yeasts, in dogs. J Toxicol Sci. 2004;29(5):555–69. 10.2131/jts.29.555
    1. Min S-J, Zheng M-S, Park J-I, Lee J-S, Kim Y-B, Kang J-K, et al. Genotoxicity Studies on Geranti Bio-Ge Yeast®, an Organic Germanium Synthesized in Yeasts. Lab Anim Res. 2004;20(1):81–8.
    1. Ahn D, Choi Y. Chronic toxicity of Dry Yeast-G (biogermanium) orally administered to beagle dogs for 10 consecutive months. Korean J Lab Anim Sci. 2001.
    1. Lee S-H, Oh K-N, Rho S-N, Lee B-H, Lee H-J. Oral Repeated-dose Toxicity Studies Especially in the Liver and Kidney of Rats Administered with Organic Germanium-fortified Yeasts. Prev Nutr Food Sci. 2006;11(2):115–9.
    1. Ahn D, Choi Y. Chronic toxicity of Dry Yeast-G (biogermanium) orally administered to rats for 10 consecutive months. Korean J Lab Anim Sci. 2001.
    1. Lee S-H, Rho S-N, Sohn T-U. Efficacy study of activation on macrophage in germanium-fortified Yeast. J Korean Soc Appl Biol Chem. 2005;48(3):246–51.
    1. Lee S-H, Oh S-W, Rho S-N, Lee B-H, Lee H-J, Jin D-K. Effects of Germanium-fortified Yeast on the Serum Lipids and Immune Cell Subset. J Korean Soc Food Sci Nutr. 2006;35(6):683–9.
    1. Joo SS, Won TJ, Lee YJ, Kim MJ, Park S-Y, Lee SH, et al. Effect of Geranti Bio-Ge Yeast, a Dried Yeast Containing Biogermanium, on the Production of Antibodies by B Cells. Immune Netw. 2006;6(2):86–92.
    1. Tao S-H, Bolger PM. Hazard assessment of germanium supplements. Regul Toxicol Pharmacol. 1997;25(3):211–9. 10.1006/rtph.1997.1098
    1. Kaplan BJ, Andrus GM, Parish WW. Germane facts about germanium sesquioxide: II. Scientific error and misrepresentation. Altern Complement Med. 2004;10(2):345–8.
    1. Song W, Lee S, Oh T. Preparation of organic germanium by yeast cell. Kor J Appl Microbiol Biotechnol. 1995.
    1. Ramsay LM, Gadd GM. Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett. 1997;152(2):293–8. 10.1111/j.1574-6968.1997.tb10442.x
    1. Bode H-P, Friebel C, Fuhrmann GF. Vanadium uptake by yeast cells. Biochim Biophys Acta Bioenerg. 1990;1022(2):163–70.
    1. Gadd G. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev. 1993;11(4):297–316.
    1. Tuite MF. Strategies for the genetic manipulation of Saccharomyces cerevisiae. Crit Rev Biotechnol. 1992;12(1–2):157–88. 10.3109/07388559209069191
    1. Vera J, Parissi V, García A, Zuniga R, Andreola M-L, Caumont-Sarcos A, et al. Yeast system as a model to study Moloney murine leukemia virus integrase: expression, mutagenesis and search for eukaryotic partners. J Gen Virol. 2005;86(9):2481–8.
    1. Goodman S. Therapeutic effects of organic germanium. Med Hypotheses. 1988;26(3):207–15. 10.1016/0306-9877(88)90101-6
    1. Schroeder HA, Balassa JJ. Abnormal trace metals in man: germanium. J Chronic Dis. 1967;20(4):211–24. 10.1016/0021-9681(67)90003-3
    1. Chen Y, Wang N, Shangguan G, Chen Y. Determination of germanium in urine and studies on pharmacokinetics of Ge-132 in body. Zhongguo Yiyuan Yaoxue Zazhi. 1993;13:103–5.
    1. Miyao K. Toxicology and phase I studies on a novel organogermanium compound, Ge-132. Curr Chemother Infec Dis. 1979;2:1527–9.
    1. Hart DN. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood. 1997;90(9):3245–87.
    1. Fantone JC, Ward P. Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol. 1982;107(3):395
    1. Caron F, Meurice JC, Ingrand P, Bourgoin A, Masson P, Roblot P, et al. Acute Q fever pneumonia: a review of 80 hospitalized patients. Chest. 1998;114(3):808–13. 10.1378/chest.114.3.808
    1. Dias AMB, Do Couto MCM, Duarte CCM, Inês LPB, Malcata AB. White Blood Cell Count Abnormalities and Infections in One‐year Follow‐up of 124 Patients with SLE. Ann N Y Acad Sci. 2009;1173(1):103–7.
    1. Tamakoshi K, Toyoshima H, Yatsuya H, Matsushita K, Okamura T, Hayakawa T, et al. White blood cell count and risk of all-cause and cardiovascular mortality in nationwide sample of Japanese. Circ J. 2007;71(4):479–85. 10.1253/circj.71.479
    1. Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol. 2005;45(10):1638–43. 10.1016/j.jacc.2005.02.054
    1. Madjid M, Awan I, Willerson JT, Casscells SW. Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol. 2004;44(10):1945–56. 10.1016/j.jacc.2004.07.056
    1. Grau AJ, Boddy AW, Dukovic DA, Buggle F, Lichy C, Brandt T, et al. Leukocyte count as an independent predictor of recurrent ischemic events. Stroke. 2004;35(5):1147–52. 10.1161/01.STR.0000124122.71702.64
    1. Bickel C, Rupprecht HJ, Blankenberg S, Espiniola-Klein C, Schlitt A, Rippin G, et al. Relation of markers of inflammation (C-reactive protein, fibrinogen, von Willebrand factor, and leukocyte count) and statin therapy to long-term mortality in patients with angiographically proven coronary artery disease. Am J Cardiol. 2002;89(8):901–8. 10.1016/s0002-9149(02)02236-1
    1. Eom S-Y, Zhang Y-W, Kim N-S, Kang J-W, Hahn Y-S, Shin K-S, et al. Effects of Keumsa Sangwhang (Phellinus linteus) mushroom extracts on the natural killer cell activity in human. Korean J Food Sci Technol. 2006;38(5):717–9.
    1. Komano Y, Shimada K, Naito H, Fukao K, Ishihara Y, Fujii T, et al. Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. J Int Soc Sports Nutr. 2018;15(1):39 10.1186/s12970-018-0244-9
    1. Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology. 2012;102(3):178–84. 10.1159/000339182
    1. Lange S. The All Randomized/Full Analysis Set (ICH E9)—May Patients Be Excluded from the Analysis? Drug Inf J. 2001;35(3):881–91.
    1. Lewis J, Louv W, Rockhold F, Sato T. The impact of the international guideline entitled Statistical Principles for Clinical Trials (ICH E9). Stat Med. 2001;20(17‐18):2549–60. 10.1002/sim.728
    1. Forel J-M, Chiche L, Thomas G, Mancini J, Farnarier C, Cognet C, et al. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS One. 2012;7(12):e50446 10.1371/journal.pone.0050446
    1. Weiss G, Meyer F, Matthies B, Pross M, Koenig W, Lippert H. Immunomodulation by perioperative administration of n-3 fatty acids. Br J Nutr. 2002;87(S1):S89–S94.
    1. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L. What is a natural killer cell? Nat Immunol. 2002;3(1):6 10.1038/ni0102-6
    1. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in immunology,. 2014;5:491 10.3389/fimmu.2014.00491
    1. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol. 2005;5(2):112 10.1038/nri1549
    1. Biron CA. Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol. 1997;9(1):24–34. 10.1016/s0952-7915(97)80155-0
    1. Scott P, Trinchieri G. The role of natural killer cells in host—parasite interactions. Curr Opin Immunol. 1995;7(1):34–40. 10.1016/0952-7915(95)80026-3
    1. Unanue ER. Inter-relationship among macrophages, natural killer cells and neutrophils in early stages of Listeria resistance. Curr Opin Immunol. 1997;9(1):35–43. 10.1016/s0952-7915(97)80156-2
    1. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–9. 10.1016/S0140-6736(00)03231-1
    1. Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, et al. Immunosenescence of human natural killer cells. J Innate Immun. 2011;3(4):337–43. 10.1159/000328005
    1. Li L, Ruan T, Lyu Y, Wu B. Advances in effect of germanium or germanium compounds on animals—a review. Journal of biosciences and medicines. 2017;5(07):56.
    1. Levine SA, Kidd PM. Oxygen-nutrition for super health. J Orthomol Med. 1986;1:145–8.
    1. Han C, Wu G, Yin Y, Shen M. Inhibition by germanium oxide of the mutagenicity of cadmium chloride in various genotoxicity assays. Food Chem Toxicol. 1992;30(6):521–4. 10.1016/0278-6915(92)90104-s
    1. Lee CH, Lin RH, Liu SH, Lin‐Shiau SY. Effects of germanium oxide and other chemical compounds on phenylmercury acetate‐induced genotoxicity in cultured human lymphocytes. Environ Mol Mutagen 1998;31(2):157–62. 10.1002/(sici)1098-2280(1998)31:2&lt;157::aid-em7&gt;;2-j
    1. Asai K. Miracle cure: organic germanium: Japan Publications; 1980.
    1. Kim E, Jeon Y, Kim DY, Lee E, Hyun S-H. Antioxidative effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF. Theriogenology. 2015;84(2):226–36. 10.1016/j.theriogenology.2015.03.006
    1. Wada T, Hanyu T, Nozaki K, Kataoka K, Kawatani T, Asahi T, et al. Antioxidant activity of Ge-132, a synthetic organic germanium, on cultured mammalian cells. Biol Pharm Bull. 2018:b17–00949.
    1. Nakamura T, Nagura T, Akiba M, Sato K, Tokuji Y, Ohnishi M, et al. Promotive effects of the dietary organic germanium poly-trans-[(2-carboxyethyl) germasesquioxane](Ge-132) on the secretion and antioxidative activity of bile in rodents. J Health Sci. 2010;56(1):72–80.
    1. Kim E, Hwang S-U, Yoon JD, Jeung E-B, Lee E, Kim DY, et al. Carboxyethylgermanium sesquioxide (Ge-132) treatment during in vitro culture protects fertilized porcine embryos against oxidative stress induced apoptosis. J Reprod Develop. 2017.
    1. El-Din NKB. Protective role of sanumgerman against γ-irradiation–induced oxidative stress in Ehrlich carcinoma-bearing mice. Nutr Res. 2004;24(4):271–91.
    1. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Fifth Edition ed: Oxford University Press; 2015.
    1. Prónai L, Arimori S. Decreased plasma superoxide scavenging activity in immunological disorders—carboxyethylgermanium sesquioxide (Ge-132) as a promoter of prednisolone. Biotherapy. 1992;4(1):1–8. 10.1007/BF02171703
    1. Tezuka T, Higashino A, Akiba M, Nakamura T. Organogermanium (Ge-132) suppresses activities of stress enzymes responsible for active oxygen species in monkey liver preparation. Adv Enzyme Res 2017;5(02):13.
    1. Pi J, Zeng J, Luo J-J, Yang P-H, Cai J-Y. Synthesis and biological evaluation of Germanium (IV)–polyphenol complexes as potential anti-cancer agents. Bioorg Med Chem Lett. 2013;23(10):2902–8. 10.1016/j.bmcl.2013.03.061
    1. Pizzorno J. Glutathione! J Integr Med. 2014;13(1):8.
    1. Bounous G, Batist G, Gold P. IMMUNOENHANCING PROPERTY OF DIETARY WHEY PROTEIN IN MICE: ROLE OF GLUTATHIONE. Clin Invest Med. 1989;12:154–61.
    1. Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 2000;20(6):4785–92.
    1. Robinson MK, Rodrick ML, Jacobs DO, Rounds JD, Collins KH, Saporoschetz IB, et al. Glutathione depletion in rats impairs T-cell and macrophage immune function. AMA Arch Surg. 1993;128(1):29–35. 10.1001/archsurg.1993.01420130033006
    1. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670–3. 10.1126/science.1129594
    1. Wilder JA, Koh CY, Yuan D. The role of NK cells during in vivo antigen-specific antibody responses. J Immunol. 1996;156(1):146–52.
    1. Mazor Y, Yang C, Borrok MJ, Ayriss J, Aherne K, Wu H, et al. Enhancement of immune effector functions by modulating IgG’s intrinsic affinity for target antigen. PLoS One. 2016;11(6):e0157788 10.1371/journal.pone.0157788
    1. Bruggeman CW, Dekkers G, Bentlage AE, Treffers LW, Nagelkerke SQ, Lissenberg-Thunnissen S, et al. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. J Immunol. 2017:1700116.
    1. Kin NW, Sanders VM. CD86 regulates IgG1 production via a CD19-dependent mechanism. J Immunol. 2007;179(3):1516–23. 10.4049/jimmunol.179.3.1516
    1. Heo I, Choi Y, Kwon W. The spatial and temporal distributions of NET (Net Effective Temperature) with a function of temperature, humidity and wind speed in Korea. J Geol Soc. 2004;39(1):13–26.
    1. Brenner I, Castellani J, Gabaree C, Young A, Zamecnik J, Shephard R, et al. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol. 1999;87(2):699–710. 10.1152/jappl.1999.87.2.699
    1. Monthly Weather Report (Jan.-Apr.). Korea Meteorological Administration, 2018. Contract No.: Publication Number: 11-1360000-000002-06.
    1. Honda A, Matsuda Y, Murayama R, Tsuji K, Nishikawa M, Koike E, et al. Effects of Asian sand dust particles on the respiratory and immune system. J Appl Toxicol. 2014;34(3):250–7. 10.1002/jat.2871

Source: PubMed

3
Předplatit