Comparative Histological and Histomorphometric Results of Six Biomaterials Used in Two-Stage Maxillary Sinus Augmentation Model after 6-Month Healing

Gerardo La Monaca, Giovanna Iezzi, Maria Paola Cristalli, Nicola Pranno, Gian Luca Sfasciotti, Iole Vozza, Gerardo La Monaca, Giovanna Iezzi, Maria Paola Cristalli, Nicola Pranno, Gian Luca Sfasciotti, Iole Vozza

Abstract

Objectives: To evaluate the performances of six different bone substitute materials used as graft in maxillary sinus augmentation by means of histological and histomorphometric analysis of bone biopsies retrieved from human subjects after a 6-month healing period.

Materials and methods: Six consecutive patients (3 males, 3 females, aged 50-72 years), healthy, nonsmokers, and with good oral hygiene, presenting edentulous posterior maxilla with a residual bone crest measuring ≤ 4 mm in vertical height and 3 to 5 mm in horizontal thickness at radiographic examination, were selected to receive sinus augmentation and delayed implant placement. Under randomized conditions, sinus augmentation procedures were carried out using mineralized solvent-dehydrated bone allograft (MCBA), freeze-dried mineralized bone allograft (FDBA), anorganic bovine bone (ABB), equine-derived bone (EB), synthetic micro-macroporous biphasic calcium-phosphate block consisting of 70% beta-tricalcium phosphate and 30% hydroxyapatite (HA-β-TCP 30/70), or bioapatite-collagen (BC). After 6 months, bone core biopsies were retrieved and 13 implants were placed. Bone samples were processed for histological and histomorphometric analysis. CT scans were taken before and after surgery. After 4 months of healing, patients were restored with a provisional fixed acrylic resin prosthesis, as well as after further 2-4 months with a definitive cemented zirconia or porcelain-fused-to-metal crowns.

Results: There were no postoperative complications or implant failures. The histological examination showed that all biomaterials were in close contact with newly formed bone, surrounding the graft granules with a bridge-like network. No signs of acute inflammation were observed. The histomorphometry revealed 20.1% newly formed bone for MCBA, 32.1% for FDBA, 16.1% for ABB, 22.8% for EB, 20.3% for HA-β-TCP 30/70, and 21.4% for BC.

Conclusions: Within the limitations of the present investigation, all the six tested biomaterials showed good biocompatibility and osteoconductive properties when used in sinus augmentation procedures, although the FDBA seemed to have a better histomorphometric result in terms of newly formed bone and residual graft material. This trial is registered with ClinicalTrials.gov Identifier (Registration Number): NCT03496688.

Figures

Figure 1
Figure 1
Intraoperative views of the sinus augmentation procedure: (a) mobilization of the mucoperiosteal flap; (b) oval-shaped bony window; (c) sinus membrane elevation; (d) graft material in place; (e) resorbable membrane over the lateral window; (f) suture; (g) bone core biopsy and implant placement; (h) trephine bur and harvested specimen; (i) suture.
Figure 2
Figure 2
Radiographic evaluation: (a) CT scan before surgery; (b) CT scan after 6 months of graft healing; (c) CT scan after implant placement.
Figure 3
Figure 3
Mineralized solvent-dehydrated bone (toluidine blue and acid fuchsin): (a) trabecular bone with large marrow spaces and biomaterial particles was observed (original magnification 12X); (b) the biomaterial particles showed different sizes and they were partially surrounded by newly formed bone that was characterized by large osteocyte lacunae (original magnification 40X).
Figure 4
Figure 4
Freeze-dried mineralized bone allograft (toluidine blue and acid fuchsin): (a) newly formed bone with marrow spaces and particles of residual biomaterial was present. In a marginal portion of the sample, preexisting bone with small remodeling areas could be observed (original magnification 12X); (b) the biomaterial particles, showing areas of bone neoformation in their inner part, could be observed. Some of the biomaterial particles showed irregular margins, typical of a resorption process (original magnification 40X).
Figure 5
Figure 5
Anorganic bovine bone (toluidine blue and acid fuchsin): (a) the specimen appeared to be constituted by two separate fragments, where several particles of residual biomaterial were evident (original magnification 12X); (b) the areas of bone neoformation in tight contact with the biomaterial surface were present. In some fields, new bone formation inside the biomaterial particles could be observed (original magnification 40X).
Figure 6
Figure 6
Equine-derived bone (toluidine blue and acid fuchsin): (a) trabecular bone with large marrow spaces and biomaterial particles was observed. The biomaterial particles were located in the apical portion of the biopsy and they were surrounded by new bone (original magnification 12X); (b) the bone was in close contact with the granules and in some areas osteoblasts were observed in the process of apposing bone directly on the particle surface (original magnification 40X).
Figure 7
Figure 7
Synthetic micro-macroporous biphasic calcium-phosphate (HA-β-TCP 30/70) (toluidine blue and acid fuchsin): (a) trabecular bone with marrow spaces and residual biomaterial, located in the apical portion of the sample, could be observed (original magnification 12X); (b) the residual biomaterial was surrounded by newly formed bone and no gaps were present at the bone biomaterial interface. In some fields, the graft seemed to undergo resorption. Many large blood vessels could be seen (original magnification 40X).
Figure 8
Figure 8
Bioapatite-collagen (toluidine blue and acid fuchsin): (a) trabecular bone with marrow spaces and residual biomaterial particles was observed (original magnification 12X); (b) osteoblasts were observed in the process of apposing bone directly on the particle surface. Marrow spaces were colonized by small and large blood vessels in close proximity to the new bone and to the particles (original magnification 40X); (c) moderate inflammatory infiltrate and multinucleated giant cells, probably osteoclasts, were observed directly on the biomaterial particles surface (original magnification 400X).

References

    1. Pilipchuk S. P., Plonka A. B., Monje A., et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials. 2015;31(4):317–338. doi: 10.1016/j.dental.2015.01.006.
    1. Castagna L., Polido W. D., Soares L. G., Tinoco E. M. B. Tomographic evaluation of iliac crest bone grafting and the use of immediate temporary implants to the atrophic maxilla. International Journal of Oral and Maxillofacial Surgery. 2013;42(9):1067–1072. doi: 10.1016/j.ijom.2013.04.020.
    1. Klijn R. J., Meijer G. J., Bronkhorst E. M., Jansen J. A. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Engineering—Part B: Reviews. 2010;16(5):493–507. doi: 10.1089/ten.teb.2010.0035.
    1. Zijderveld S. A., Schulten E. A. J. M., Aartman I. H. A., Ten Bruggenkate C. M. Long-term changes in graft height after maxillary sinus floor elevation with different grafting materials: Radiographic evaluation with a minimum follow-up of 4.5 years. Clinical Oral Implants Research. 2009;20(7):691–700. doi: 10.1111/j.1600-0501.2009.01697.x.
    1. Misch C. M. Autogenous bone: is it still the gold standard? Implant Dentistry. 2010;19(5):p. 361. doi: 10.1097/id.0b013e3181f8115b.
    1. Bavetta G., Licata M. E. The use of human allogenic graft (HBA) for maxillary bone regeneration: Review of literature and case reports. Current Pharmaceutical Design. 2012;18(34):5559–5568. doi: 10.2174/138161212803307572.
    1. Danesh-Sani S. A., Wallace S. S., Movahed A., et al. Maxillary Sinus Grafting with Biphasic Bone Ceramic or Autogenous Bone: Clinical, Histologic, and Histomorphometric Results from a Randomized Controlled Clinical Trial. Implant Dentistry. 2016;25(5):588–593. doi: 10.1097/ID.0000000000000474.
    1. Schmitt C. M., Doering H., Schmidt T., Lutz R R., Neukam F. W., Schlegel K. A. Histological results after maxillary sinus augmentation with Straumann, BoneCeramic, Bio-Oss, Puros, and autologous bone. A randomized controlled clinical trial. Clinical Oral Implants Research. 2013;24(5):576–585. doi: 10.1111/j.1600-0501.2012.02431.x.
    1. Annibali S., Cristalli M. P., La Monaca G., et al. Human maxillary sinuses augmented with mineralized, solvent-dehydrated bone allograft: a longitudinal case series. Implant Dentistry. 2011;20(6):445–454. doi: 10.1097/id.0b013e31823420a4.
    1. Nevins M., Heinemann F., Janke U. W. Equine-derived bone mineral matrix for maxillary sinus floor augmentation: a clinical, radiographic, histologic, and histomorphometric case series. The International journal of periodontics & restorative dentistry. 2013;33(4):483–489. doi: 10.11607/prd.1728.
    1. Tetè S., Vinci R., Zizzari V. L., et al. Maxillary sinus augmentation procedures through equine-derived biomaterial or calvaria autologous bone: immunohistochemical evaluation of OPG/RANKL in humans. European Journal of Histochemistry. 2013;57(1):p. e10.
    1. Bassil J., Naaman N., Lattouf R., et al. Clinical, histological, and histomorphometrical analysis of maxillary sinus augmentation using inorganic bovine in humans: preliminary results. Journal of Oral Implantology. 2013;39(1):73–80. doi: 10.1563/aaid-joi-d-11-00012.
    1. Lee D. Z., Chen S. T., Darby I. B. Maxillary sinus floor elevation and grafting with deproteinized bovine bone mineral: a clinical and histomorphometric study. Clinical Oral Implants Research. 2012;23(8):918–924. doi: 10.1111/j.1600-0501.2011.02239.x.
    1. Chackartchi T., Iezzi G., Goldstein M., et al. Sinus floor augmentation using large (1-2mm) or small (0.25-1mm) bovine bone mineral particles: A prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study. Clinical Oral Implants Research. 2011;22(5):473–480. doi: 10.1111/j.1600-0501.2010.02032.x.
    1. Mordenfeld A., Hallman M., Johansson C. B., Albrektsson T. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clinical Oral Implants Research. 2010;21(9):961–970. doi: 10.1111/j.1600-0501.2010.01939.x.
    1. Mangano C., Sinjari B., Shibli J. A., et al. A Human clinical, histological, histomorphometrical, and radiographical study on biphasic ha-beta-tcp 30/70 in maxillary sinus augmentation. Clinical Implant Dentistry and Related Research. 2015;17(3):610–618. doi: 10.1111/cid.12145.
    1. Mazor Z., Horowitz R. A., del Corso M., Prasad H. S., Rohrer M. D., Ehrenfest D. M. D. Sinus floor augmentation with simultaneous implant placement using Choukroun's platelet-rich fibrin as the sole grafting material: a radiologic and histologic study at 6 months. Journal of Periodontology. 2009;80(12):2056–2064. doi: 10.1902/jop.2009.090252.
    1. Dinato T. R., Grossi M. L., Teixeira E. R., Dinato J. C., Sczepanik F. S., Gehrke S. A. Marginal bone loss in implants placed in the maxillary sinus grafted with anorganic bovine bone: a prospective clinical and radiographic study. Journal of Periodontology. 2016;87(8):880–887. doi: 10.1902/jop.2016.150514.
    1. Iezzi G., Degidi M., Piattelli A., et al. Comparative histological results of different biomaterials used in sinus augmentation procedures: a human study at 6 months. Clinical Oral Implants Research. 2012;23(12):1369–1376. doi: 10.1111/j.1600-0501.2011.02308.x.
    1. Danesh-Sani S. A., Engebretson S. P., Janal M. N. Histomorphometric results of different grafting materials and effect of healing time on bone maturation after sinus floor augmentation: a systematic review and meta-analysis. Journal of Periodontal Research. 2016;52(3):301–312. doi: 10.1111/jre.12402.
    1. Chiapasco M., Casentini P., Zaniboni M. Bone augmentation procedures in implant dentistry. The International Journal of Oral & Maxillofacial Implants. 2009;24(supplement):237–259.
    1. Froum S. J., Wallace S. S., Elian N., Cho S. C., Tarnow D. P. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. International Journal of Periodontics and Restorative Dentistry. 2006;26(6):543–551.
    1. Wood R. A., Mealey B. L. Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. Journal of Periodontology. 2012;83(3):329–336. doi: 10.1902/jop.2011.110270.
    1. Froum S. J., Wallace S. S., Cho S.-O., Elian N., Tarnow D. P. Histomorphometric comparison of a biphasic bone ceramic to anorganic bovine bone for sinus augmentation: 6- to 8-month postsurgical assessment of vital bone formation. A Pilot Study. International Journal of Periodontics and Restorative Dentistry. 2008;28(3):273–281.
    1. Cannizzaro G., Felice P., Leone M., Viola P., Esposito M. Early loading of implants in the atrophic posterior maxilla: lateral sinus lift with autogenous bone and Bio-Oss versus crestal mini sinus lift and 8-mm hydroxyapatite-coated implants. A randomised controlled clinical trial. European Journal of Oral Implantology. 2009;2(1):25–38.
    1. Iezzi G., Scarano A., Mangano C., Cirotti B., Piattelli A. Histologic results from a human implant retrieved due to fracture 5 years after insertion in a sinus augmented with anorganic bovine bone. Journal of Periodontology. 2008;79(1):192–198. doi: 10.1902/jop.2008.070105.
    1. Di Stefano D. A., Gastaldi G., Vinci R., et al. Bone formation following sinus augmentation with an equine-derived bone graft: A retrospective histologic and histomorphometric study with 36-month follow-up. The International Journal of Oral & Maxillofacial Implants. 2016;31(2):406–412. doi: 10.11607/jomi.4373.
    1. Tetè S., Zizzari V. L., Vinci R., et al. Equine and porcine bone substitutes in maxillary sinus augmentation: A histological and immunohistochemical analysis of VEGF expression. The Journal of Craniofacial Surgery. 2014;25(3):835–839. doi: 10.1097/SCS.0000000000000679.
    1. Di Stefano D. A. L., Gastaldi G., Vinci R., Cinci L., Pieri L., Gherlone E. Histomorphometric Comparison of Enzyme-Deantigenic Equine Bone and Anorganic Bovine Bone in Sinus Augmentation: A Randomized Clinical Trial with 3-Year Follow-Up. The International journal of oral & maxillofacial implants. 2015;30(5):1161–1167. doi: 10.11607/jomi.4057.
    1. Artese L., Piattelli A., Di Stefano D. A., et al. Sinus lift with autologous bone alone or in addition to equine bone: an immunohistochemical study in man. Implant Dentistry. 2011;20(5):383–388. doi: 10.1097/id.0b013e3182310b3d.
    1. Raynaud S., Champion E., Lafon J. P., Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials. 2002;23(4):1081–1089. doi: 10.1016/S0142-9612(01)00220-4.
    1. Mangano C., Perrotti V., Shibli J. A., et al. Maxillary sinus grafting with biphasic calcium phosphate ceramics: clinical and histologic evaluation in man. The International Journal of Oral & Maxillofacial Implants. 2013;28(1):51–56. doi: 10.11607/jomi.2667.
    1. Broggini N., Bosshardt D. D., Jensen S. S., Bornstein M. M., Wang C.-C., Buser D. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2015;103(7):1478–1487. doi: 10.1002/jbm.b.33319.
    1. Garlini G., Redemagni M., Donini M., Maiorana C. Maxillary Sinus Elevation With an Alloplastic Material and Implants: 11 Years of Clinical and Radiologic Follow-Up. Journal of Oral and Maxillofacial Surgery. 2010;68(5):1152–1157. doi: 10.1016/j.joms.2009.05.440.
    1. Trombelli L., Penolazzi L., Torreggiani E., et al. Effect of hydroxyapatite-based biomaterials on human osteoblast phenotype. Minerva stomatologica. 2010;59(3):103–115.
    1. del Fabbro M., Rosano G., Taschieri S. Implant survival rates after maxillary sinus augmentation. European Journal of Oral Sciences. 2008;116(6):497–506. doi: 10.1111/j.1600-0722.2008.00571.x.
    1. Kim Y. K., Yun P. Y., Kim S. G., Lim S. C. Analysis of the healing process in sinus bone graft- ing using various grafting materials. Oral Surg Oral Med Oral Pathol OralRadiol Endod. 2009;107:204–211.
    1. Annibali S., Iezzi G., Sfasciotti G. L., et al. Histological and histomorphometric human results of HA-Beta-TCP 30/70 compared to three different biomaterials in maxillary sinus augmentation at 6 months: A preliminary report. BioMed Research International. 2015;2015 doi: 10.1155/2015/156850.156850
    1. Monje A., O'Valle F., Monje-Gil F., et al. Cellular, vascular, and histomorphometric outcomes of solvent-dehydrated vs freeze-dried allogeneic graft for maxillary sinus augmentation: A randomized case series. The International Journal of Oral & Maxillofacial Implants. 2017;32(1):121–127. doi: 10.11607/jomi.4801.
    1. Scarano A., Degidi M., Iezzi G., et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dentistry. 2006;15(2):197–207. doi: 10.1097/01.id.0000220120.54308.f3.
    1. Noumbissi S. S., Lozada J. L., Boyne P. J., et al. Clinical, histologic, and histomorphometric evaluation of mineralized solvent-dehydrated bone allograf (Puros) in human maxillary sinus grafts. Journal of Oral Implantology. 2005;31(4):171–179. doi: 10.1563/1548-1336(2005)31[171:CHAHEO];2.
    1. Kolerman R., Nissan J., Rahmanov M., Vered H., Cohen O., Tal H. Comparison between mineralized cancellous bone allograft and an alloplast material for sinus augmentation: A split mouth histomorphometric study. Clinical Implant Dentistry and Related Research. 2017;19(5):812–820. doi: 10.1111/cid.12518.
    1. Cammack G. V., II, Nevins M., Clem D. S., III, Hatch J. P., Mellonig J. T. Histologic evaluation of mineralized and demineralized freeze-dried bone allograft for ridge and sinus augmentations. International Journal of Periodontics and Restorative Dentistry. 2005;25(3):231–237.
    1. Zizzari V. L., Zara S., Tetè G., Vinci R., Gherlone E., Cataldi A. Biologic and clinical aspects of integration of different bone substitutes in oral surgery: a literature review. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2016;122(4):392–402. doi: 10.1016/j.oooo.2016.04.010.
    1. Sbordone C., Toti P., Guidetti F., Califano L., Pannone G., Sbordone L. Volumetric changes after sinus augmentation using blocks of autogenous iliac bone or freeze-dried allogeneic bone. A non-randomized study. Journal of Cranio-Maxillo-Facial Surgery. 2014;42(2):113–118. doi: 10.1016/j.jcms.2013.03.004.
    1. Piattelli A., Degidi M., Di Stefano D. A., Rubini C., Fioroni M., Strocchi R. Microvessel Density in Alveolar Ridge Regeneration with Autologous and Alloplastic Bone. Implant Dentistry. 2002;11(4):370–375. doi: 10.1097/00008505-200211040-00017.
    1. Traini T., Valentini P., Iezzi G., Piattelli A. A histologic and histomorphometric evaluation of anorganic bovine bone retrieved 9 years after a sinus augmentation procedure. Journal of Periodontology. 2007;78(5):955–961. doi: 10.1902/jop.2007.060308.
    1. Giuliani A., Manescu A., Larsson E., et al. In vivo regenerative properties of coralline-derived (Biocoral) scaffold grafts in human maxillary defects: demonstrative and comparative study with beta-tricalcium phosphate and biphasic calcium phosphate bu synchrotron radiation x-ray microtopograph. Clinical Implant Dentistry and Related Research. 2014;16(5):736–750. doi: 10.1111/cid.12039.
    1. Wallace S. S., Froum S. J., Cho S.-C., et al. Sinus augmentation utilizing anorganic bovine bone (Bio-Oss) with absorbable and nonabsorbable membranes placed over the lateral window: histomorphometric and clinical analyses. International Journal of Periodontics & Restorative Dentistry. 2005;25(6):551–559.
    1. Sibilla P., Sereni A., Aguiari G., et al. Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. Journal of Dental Research. 2006;85(4):354–358. doi: 10.1177/154405910608500414.
    1. Maiorana C., Sigurtà D., Mirandola A., Garlini G., Santoro F. Bone resorption around dental implants placed in grafted sinuses: Clinical and radiologic follow-up after up to 4 years. The International Journal of Oral & Maxillofacial Implants. 2005;20(2):261–266.
    1. Maiorana C., Sigurtà D., Mirandola A., Garlini G., Santoro F. Sinus elevation with alloplasts or xenogenic materials and implants: An up-to-4-year clinical and radiologic follow-up. The International Journal of Oral & Maxillofacial Implants. 2006;21(3):426–432.
    1. Marinucci L., Balloni S., Becchetti E., et al. Effects of hydroxyapatite and biostite® on osteogenic induction of hMSC. Annals of Biomedical Engineering. 2010;38(3):640–648. doi: 10.1007/s10439-009-9898-4.
    1. Paknejad M., Emtiaz S., Rokn A., Islamy B., Safiri A. Histologic and histomorphometric evaluation of two bone substitute materials for bone regeneration: An experimental study in sheep. Implant Dentistry. 2008;17(4):471–479. doi: 10.1097/ID.0b013e3181815596.

Source: PubMed

3
Předplatit