Differences in femoral component subsidence rate after THA using an uncemented collarless femoral stem: full weight-bearing with an enhanced recovery rehabilitation versus partial weight-bearing

Franziska Leiss, Julia Sabrina Götz, Matthias Meyer, Günther Maderbacher, Jan Reinhard, Lukas Parik, Joachim Grifka, Felix Greimel, Franziska Leiss, Julia Sabrina Götz, Matthias Meyer, Günther Maderbacher, Jan Reinhard, Lukas Parik, Joachim Grifka, Felix Greimel

Abstract

Background: Femoral component subsidence is a known risk factor for early failure of total hip arthroplasty (THA) using cementless stems. The aim of the study was to compare an enhanced recovery concept with early full weight-bearing rehabilitation and partial weight-bearing on stem subsidence. In addition, the influence of patient-related and anatomical risk factors on subsidence shall be assessed.

Methods: One hundred and fourteen patients underwent primary cementless THA and were retrospectively analyzed. Sixty-three patients had an enhanced recovery rehabilitation with early full weight-bearing and 51 patients had rehabilitation with partial weight-bearing (20 kg) for 6 weeks. Postoperative subsidence was analyzed on standing pelvic anterior-posterior radiographs after 4 weeks and 1 year. Subsidence was measured in mm. Anatomical and prosthetic risk factors (stem size, canal flare index, canal fill ratio as well as BMI and demographic data) were correlated.

Results: Femoral stem subsidence rate was significantly higher for the group with an enhanced recovery concept compared to the group with partial weight-bearing at the first radiological follow up after 4 weeks [2.54 mm (SD ± 1.86) vs. 1.55 mm (SD ± 1.80)] and the second radiological follow up after 1 year [3.43 mm (SD ± 2.24) vs. 1.94 (SD ± 2.16)] (p < 0.001, respectively). Stem angulation > 3° had a significant influence on subsidence. Canal flare index and canal fill ratio showed no significant correlation with subsidence as well as BMI and age.

Conclusion: In the present study, cementless stem subsidence was significantly higher in the group with enhanced recovery rehabilitation compared to partial weight-bearing. Small absolute values and differences were demonstrated and therefore possibly below clinical relevance. Anatomical radiological parameters and anthropometric data did not appear to be risk factors for stem subsidence.

Keywords: Cementless THA; Enhanced recovery; Stem subsidence; Total hip arthroplasty; Weight-bearing.

Conflict of interest statement

The authors have no conflicts of interest to declare.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Measuring technique on anterior-posterior radiographs of the pelvis in standing position: subsidence, stem angulation, canal fill ratio and canal flare index

References

    1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet (London, England) 2007;370:1508–1519. doi: 10.1016/S0140-6736(07)60457-7.
    1. Australian Orthopaedic Association National Joint Replacement Registry (AOANJR) (2018) Hip, knee & shoulder arthroplasty: 2018 Annual Report. AOA; Adelaide, Australia
    1. Campbell D, Mercer G, Nilsson KG, Wells V, Field JR, Callary SA. Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop. 2011;35:483–488. doi: 10.1007/s00264-009-0913-z.
    1. Al-Najjim M, Khattak U, Sim J, Chambers I. Differences in subsidence rate between alternative designs of a commonly used uncemented femoral stem. J Orthop. 2016;13:322–326. doi: 10.1016/j.jor.2016.06.026.
    1. Selvaratnam V, Shetty V, Sahni V. Subsidence in collarless corail hip replacement. Open Orthop J. 2015;9:194–197. doi: 10.2174/1874325001509010194.
    1. Ström H, Nilsson O, Milbrink J, Mallmin H, Larsson S. Early migration pattern of the uncemented CLS stem in total hip arthroplasties. Clin Orthop Relat Res. 2007;454:127–132. doi: 10.1097/01.blo.0000238785.98606.9d.
    1. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155–170. doi: 10.3109/17453678108991776.
    1. Galante J, Rostoker W, Lueck R, Ray RD. Sintered fiber metal composites as a basis for attachment of implants to bone. J Bone Joint Surg. 1971;53:101–114. doi: 10.2106/00004623-197153010-00009.
    1. Froimson MI, Garino J, Machenaud A, Vidalain JP. Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. J Arthroplast. 2007;22:1–7. doi: 10.1016/j.arth.2006.03.003.
    1. Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS. The anatomic basis of femoral component design. Clin Orthop Relat Res. 1988;235:148–165. doi: 10.1097/00003086-198810000-00015.
    1. Burke DW, O'Connor DO, Zalenski EB, Jasty M, Harris WH. Micromotion of cemented and uncemented femoral components. J Bone Joint Surg. 1991;73:33–37. doi: 10.1302/0301-620X.73B1.1991771.
    1. Callaghan JJ, Fulghum CS, Glisson RR, Stranne SK. The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs. J Bone Joint Surg. 1992;74:839–848. doi: 10.2106/00004623-199274060-00005.
    1. Hua J, Walker PS. Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs. J Bone Joint Surg. 1994;76:95–103. doi: 10.2106/00004623-199401000-00012.
    1. Cameron HU, Pilliar RM, MacNab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res. 1973;7:301–311. doi: 10.1002/jbm.820070404.
    1. Haddad RJJR, Cook SD, Thomas KA. Biological fixation of porous-coated implants. J Bone Joint Surg. 1987;69:1459–1466. doi: 10.2106/00004623-198769090-00026.
    1. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986;208:108–13. doi: 10.1097/00003086-198607000-00023.
    1. Kim YY, Kim BJ, Ko HS, Sung YB, Kim SK, Shim JC. Total hip reconstruction in the anatomically distorted hip. Cemented versus hybrid total hip arthroplasty. Arch Orthop Trauma Surg. 1998;117:8–14. doi: 10.1007/BF00703431.
    1. Kishida Y, Sugano N, Sakai T, Nishii T, Haraguchi K, Ohzono K, et al. Full weight-bearing after cementless total hip arthroplasty. Int Orthop. 2001;25:25–28. doi: 10.1007/s002640000221.
    1. Garcia-Cimbrelo E, Cruz-Pardos A, Madero R, Ortega-Andreu M. Total hip arthroplasty with use of the cementless Zweymüller Alloclassic system. A ten to thirteen-year follow-up study. J Bone Joint Surg. 2003;85:296–303. doi: 10.2106/00004623-200302000-00017.
    1. Ström H, Mallmin H, Milbrink J, Petrén-Mallmin M, Nivbrant B, Kolstad K. The cone hip stem: a prospective study of 13 patients followed for 5 years with RSA. Acta Orthop Scand. 2003;74:525–530. doi: 10.1080/00016470310017901.
    1. Youm T, Maurer SG, Stuchin SA. Postoperative management after total hip and knee arthroplasty. J Arthroplasty. 2005;20:322–324. doi: 10.1016/j.arth.2004.04.015.
    1. Berzins A, Sumner DR, Andriacchi TP, Galante JO. Stem curvature and load angle influence the initial relative bone-implant motion of cementless femoral stems. J Orthop Res Off Publ Orthop Res Soc. 1993;11:758–769. doi: 10.1002/jor.1100110518.
    1. Jasty M, O'Connor DO, Henshaw RM, Harrigan TP, Harris WH. Fit of the uncemented femoral component and the use of cement influence the strain transfer the femoral cortex. J Orthop Res Off Publ Orthop Res. 1994;12:648–656. doi: 10.1002/jor.1100120507.
    1. Radl R, Aigner C, Hungerford M, Pascher A, Windhager R. Proximal femoral bone loss and increased rate of fracture with a proximally hydroxyapatite-coated femoral component. J Bone Joint Surg. 2000;82:1151–1155. doi: 10.1302/0301-620X.82B8.0821151.
    1. Rao RR, Sharkey PF, Hozack WJ, Eng K, Rothman RH. Immediate weight bearing after uncemented total hip arthroplasty. Clin Orthop Relat Res. 1998;349:156–162. doi: 10.1097/00003086-199804000-00019.
    1. Woolson ST, Adler NS. The effect of partial or full weight bearing ambulation after cementless total hip arthroplasty. J Arthroplasty. 2002;17:820–825. doi: 10.1054/arth.2002.34809.
    1. Tian P, Li Z-J, Xu G-J, Sun X-L, Ma X-L. Partial versus early full weight bearing after uncemented total hip arthroplasty: a meta-analysis. J Orthop Surg Res. 2017;12:31. doi: 10.1186/s13018-017-0527-x.
    1. Kehlet H. Fast-track hip and knee arthroplasty. Lancet (London, England) 2013;381:1600–1602. doi: 10.1016/S0140-6736(13)61003-X.
    1. Husted H, Hansen HC, Holm G, Bach-Dal C, Rud K, Andersen KL, et al. Length of stay in total hip and knee arthroplasty in Danmark I: volume, morbidity, mortality and resource utilization. A national survey in orthopaedic departments in Denmark. Ugeskrift for laeger. 2006;168:2139–2143.
    1. World Health Organization (1987). Traitement de la douleur cancéreuse. Genève; Organisation mondiale de la Santé.
    1. Vidalain J-P. Twenty-year results of the cementless corail stem. Int Orthop. 2011;35:189–194. doi: 10.1007/s00264-010-1117-2.
    1. Zhao R, Cai H, Liu Y, Tian H, Zhang K, Liu Z. Risk factors for intraoperative proximal femoral fracture during primary cementless THA. Orthopedics. 2017;40:e281–e287. doi: 10.3928/01477447-20161116-06.
    1. Kärrholm J, Borssén B, Löwenhielm G, Snorrason F. Does early micromotion of femoral stem prostheses matter? 4–7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg. 1994;76:912–917. doi: 10.1302/0301-620X.76B6.7983118.
    1. Engh CA, O'Connor D, Jasty M, McGovern TF, Bobyn JD, Harris WH. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses. Clin Orthop Relat Res. 1992;285:13–29. doi: 10.1097/00003086-199212000-00005.
    1. Butt AJ, Weeks G, Cutrin W, Kaar K. Early experience with uncemented primary total hip arthroplasty using corail stems and duralo cups. J Bone Jt Surg Br. 2005;87:269.
    1. Khatib YSO, Mendes DG, Said M. Corail stem for total hip arthroplasty: 11 years of imaging follow-up. J Bone Jt Surg Br. 2002;84:301.
    1. Jasty M, Bragdon C, Burke D, O’Connor D, Lowenstein J, Harris WH. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg. 1997;79:707–714. doi: 10.2106/00004623-199705000-00010.
    1. Schiffner E, Latz D, Thelen S, Grassmann JP, Karbowski A, Windolf J, et al. Aseptic loosening after THA and TKA—do gender, tobacco use and BMI have an impact on implant survival time? J Orthop. 2019;16:269–272. doi: 10.1016/j.jor.2019.03.018.
    1. Critchley O, Callary S, Mercer G, Campbell D, Wilson C. Long-term migration characteristics of the corail hydroxyapatite-coated femoral stem: a 14-year radiostereometric analysis follow-up study. Arch Orthop Trauma Surg. 2020;140:121–127. doi: 10.1007/s00402-019-03291-8.
    1. Ries C, Boese CK, Dietrich F, Miehlke W, Heisel C. Femoral stem subsidence in cementless total hip arthroplasty: a retrospective single-centre study. Int Orthop. 2019;43:307–314. doi: 10.1007/s00264-018-4020-x.
    1. Ishii S, Homma Y, Baba T, Ozaki Y, Matsumoto M, Kaneko K. Does the canal fill ratio and femoral morphology of Asian females influence early radiographic outcomes of total hip arthroplasty with an uncemented proximally coated, tapered-wedge stem? J Arthroplasty. 2016;31:1524–1528. doi: 10.1016/j.arth.2016.01.016.
    1. Cooper HJ, Jacob AP, Rodriguez JA. Distal fixation of proximally coated tapered stems may predispose to a failure of osteointegration. J Arthroplast. 2011;26:78–83. doi: 10.1016/j.arth.2011.04.003.

Source: PubMed

3
Předplatit