Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer

Kamila Schmidt, Ian Podmore, Kamila Schmidt, Ian Podmore

Abstract

An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs). VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.

Figures

Figure 1
Figure 1
Diagram of analysis with online purge and trap-gas chromatography-mass spectrometry (PT-GC-MS).
Figure 2
Figure 2
Diagram of analysis with solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS).

References

    1. WHO. World Cancer Report 2008. Lyon, France: IARC Press; 2008. (edited by P. Boyle and B. Levin).
    1. Portenoy R. K., Thaler H. T., Kornblith A. B., et al. Symptom prevalence, characteristics and distress in a cancer population. Quality of Life Research. 1994;3(3):183–189. doi: 10.1007/bf00435383.
    1. Young G., Toretsky J. A., Campbell A. B., Eskenazi A. E. Recognition of common childhood malignancies. American Family Physician. 2000;61(7):2144–2154.
    1. de Barros J. A., Valladares G., Faria A. R., et al. Early diagnosis of lung cancer: the great challenge. Epidemiological variables, clinical variables, staging and treatment. Jornal Brasileiro de Pneumologia. 2006;32(3):221–227. doi: 10.1590/s1806-37132006000900008.
    1. Gupta A. K., Brenner D. E., Turgeon D. K. Early detection of colon cancer: new tests on the horizon. Molecular Diagnosis & Therapy. 2008;12(2):77–85. doi: 10.1007/bf03256273.
    1. NLSTRT (The National Lung Screening Trial Research Team) Reduced lung-cancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine. 2011;365(5):395–409. doi: 10.1056/nejmoa1102873.
    1. Brooks J. D. Translational genomics: the challenge of developing cancer biomarkers. Genome Research. 2012;22(2):183–187. doi: 10.1101/gr.124347.111.
    1. Beger R. D. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–574. doi: 10.3390/metabo3030552.
    1. Khadir A., Tiss A. Proteomics approaches towards early detection and diagnosis of cancer. Journal of Carcinogenesis & Mutagenesis. 2013;(supplement 14, article 002):16.
    1. WHO. Indoor Air Quality: Organic Pollutants. Report on a WHO Meeting, Berlin (West) 23–27 August 1987. Copenhagen, Denmark: World Health Organization Regional Office for Europe; 1989.
    1. Pauling L., Robinson A. B., Teranishi R., Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America. 1971;68(10):2374–2376. doi: 10.1073/pnas.68.10.2374.
    1. Deng C., Zhang X. A simple, rapid and sensitive method for determination of aldehydes in human blood by gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatization. Rapid Communications in Mass Spectrometry. 2004;18(15):1715–1720. doi: 10.1002/rcm.1544.
    1. Ahmed I., Greenwood R., de Lacy Costello B., Ratcliffe N. M., Probert C. S. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS ONE. 2013;8(3) doi: 10.1371/journal.pone.0058204.e58204
    1. Gallagher M., Wysocki C. J., Leyden J. J., Spielman A. I., Sun X., Preti G. Analyses of volatile organic compounds from human skin. British Journal of Dermatology. 2008;159(4):780–791. doi: 10.1111/j.1365-2133.2008.08748.x.
    1. Filipiak W., Sponring A., Mikoviny T., et al. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell International. 2008;8, article 17 doi: 10.1186/1475-2867-8-17.
    1. O'Neill H. J., Gordon S. M., O'Neill M. H., Gibbons R. D., Szidon J. P. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clinical Chemistry. 1988;34(8):1613–1618.
    1. Ibrahim B., Basanta M., Cadden P., et al. Non-invasive phenotyping using exhaled volatile organic compounds in asthma. Thorax. 2011;66(9):804–809. doi: 10.1136/thx.2010.156695.
    1. Barker M., Hengst M., Schmid J., et al. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. European Respiratory Journal. 2006;27(5):929–936. doi: 10.1183/09031936.06.00085105.
    1. Phillips M., Cataneo R. N., Cheema T., Greenberg J. Increased breath biomarkers of oxidative stress in diabetes mellitus. Clinica Chimica Acta. 2004;344(1-2):189–194. doi: 10.1016/j.cccn.2004.02.025.
    1. Phillips M., Cataneo R. N., Condos R., et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis. 2007;87(1):44–52. doi: 10.1016/j.tube.2006.03.004.
    1. Phillips C. O., Syed Y., Parthaláin N. M., Zwiggelaar R., Claypole T. C., Lewis K. E. Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls. Journal of Breath Research. 2012;6(3) doi: 10.1088/1752-7155/6/3/036003.036003
    1. Phillips M., Boehmer J. P., Cataneo R. N., et al. Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study) Journal of Heart and Lung Transplantation. 2004;23(6):701–708. doi: 10.1016/j.healun.2003.07.017.
    1. Cao W., Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clinical Chemistry. 2006;52(5):800–811. doi: 10.1373/clinchem.2005.063545.
    1. Szulejko J. E., McCulloch M., Jackson J., McKee D. L., Walker J. C., Solouki T. Evidence for cancer biomarkers in exhaled breath. IEEE Sensors Journal. 2010;10(1):185–210. doi: 10.1109/jsen.2009.2035669.
    1. Mochalski P., King J., Haas M., Unterkofler K., Amann A., Mayer G. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease. BMC Nephrology. 2014;15(43):1–14. doi: 10.1186/1471-2369-15-43.
    1. Deng C., Zhang X., Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. Journal of Chromatography B. 2004;808(2):269–277. doi: 10.1016/j.jchromb.2004.05.015.
    1. Hakim M., Broza Y. Y., Barash O., et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical Reviews. 2012;112(11):5949–5966. doi: 10.1021/cr300174a.
    1. Buszewski B., Ulanowska A., Kowalkowski T., Cieliski K. Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. Clinical Chemistry and Laboratory Medicine. 2012;50(3):573–581. doi: 10.1515/cclm.2011.769.
    1. Phillips M., Herrera J., Krishnan S., Zain M., Greenberg J., Cataneo R. N. Variation in volatile organic compounds in the breath of normal humans. Journal of Chromatography B: Biomedical Sciences and Applications. 1999;729(1-2):75–88. doi: 10.1016/s0378-4347(99)00127-9.
    1. Kwak J., Preti G. Volatile disease biomarkers in breath: a critique. Current Pharmaceutical Biotechnology. 2011;12(7):1067–1074. doi: 10.2174/138920111795909050.
    1. Di Francesco F., Fuoco R., Trivella M. G., Ceccarini A. Breath analysis: trends in techniques and clinical applications. Microchemical Journal. 2005;79(1-2):405–410. doi: 10.1016/j.microc.2004.10.008.
    1. Kischkel S., Miekisch W., Sawacki A., et al. Breath biomarkers for lung cancer detection and assessment of smoking related effects—confounding variables, influence of normalization and statistical algorithms. Clinica Chimica Acta. 2010;411(21-22):1637–1644. doi: 10.1016/j.cca.2010.06.005.
    1. di Natale C., Macagnano A., Martinelli E., et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors and Bioelectronics. 2003;18(10):1209–1218. doi: 10.1016/s0956-5663(03)00086-1.
    1. Machado R. F. Identifying chronic obstructive pulmonary disease and asthma by exhaled breath analysis: does the (e)Nose know? American Journal of Respiratory and Critical Care Medicine. 2009;180(11):1038–1039. doi: 10.1164/rccm.200909-1374ed.
    1. Phillips M. Method for the collection and assay of volatile organic compounds in breath. Analytical Biochemistry. 1997;247(2):272–278. doi: 10.1006/abio.1997.2069.
    1. Pleil J. D., Stiegel M. A., Risby T. H. Clinical breath analysis: discriminating between human endogenous compounds and exogenous (environmental) chemical confounders. Journal of Breath Research. 2013;7(1) doi: 10.1088/1752-7155/7/1/017107.017107
    1. Manolis A. The diagnostic potential of breath analysis. Clinical Chemistry. 1983;29(1):5–15.
    1. Montuschi P. Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Therapeutic Advances in Respiratory Disease. 2007;1(1):5–23. doi: 10.1177/1753465807082373.
    1. Miekisch W., Kischkel S., Sawacki A., Liebau T., Mieth M., Schubert J. K. Impact of sampling procedures on the results of breath analysis. Journal of Breath Research. 2008;2(2) doi: 10.1088/1752-7155/2/2/026007.026007
    1. Kim K.-H., Jahan S. A., Kabir E. A review of breath analysis for diagnosis of human health. TrAC: Trends in Analytical Chemistry. 2012;33:1–8. doi: 10.1016/j.trac.2011.09.013.
    1. Alonso M., Sanchez J. M. Analytical challenges in breath analysis and its application to exposure monitoring. TrAC—Trends in Analytical Chemistry. 2013;44:78–89. doi: 10.1016/j.trac.2012.11.011.
    1. Beauchamp J. Inhaled today, not gone tomorrow: pharmacokinetics and environmental exposure of volatiles in exhaled breath. Journal of Breath Research. 2011;5(3) doi: 10.1088/1752-7155/5/3/037103.037103
    1. Poulin P., Krishnan K. A mechanistic algorithm for predicting blood: air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin. Toxicology and Applied Pharmacology. 1996;136(1):131–137. doi: 10.1006/taap.1996.0016.
    1. Silva C. L., Passos M., Câmara J. S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. British Journal of Cancer. 2011;105(12):1894–1904. doi: 10.1038/bjc.2011.437.
    1. Horváth I., Lázár Z., Gyulai N., Kollai M., Losonczy G. Exhaled biomarkers in lung cancer. European Respiratory Journal. 2009;34(1):261–275. doi: 10.1183/09031936.00142508.
    1. Phillips M., Gleeson K., Hughes J. M. B., et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet. 1999;353(9168):1930–1933. doi: 10.1016/s0140-6736(98)07552-7.
    1. Aksenov A. A., Gojova A., Zhao W., et al. Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: a cell's ‘chemical door fingerprint’. ChemBioChem. 2012;13(7):1053–1059. doi: 10.1002/cbic.201200011.
    1. Bunge M., Araghipour N., Mikoviny T., et al. On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Applied and Environmental Microbiology. 2008;74(7):2179–2186. doi: 10.1128/AEM.02069-07.
    1. Garner C. E., Smith S., Costello B. D. L., et al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. The FASEB Journal. 2007;21(8):1675–1688. doi: 10.1096/fj.06-6927com.
    1. Zhu J., Bean H. D., Kuo Y.-M., Hill J. E. Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. Journal of Clinical Microbiology. 2010;48(12):4426–4431. doi: 10.1128/JCM.00392-10.
    1. Syhre M., Manning L., Phuanukoonnon S., Harino P., Chambers S. T. The scent of Mycobacterium tuberculosis—part II breath. Tuberculosis. 2009;89(4):263–266. doi: 10.1016/j.tube.2009.04.003.
    1. Cornu J.-N., Cancel-Tassin G., Ondet V., Girardet C., Cussenot O. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. European Urology. 2011;59(2):197–201. doi: 10.1016/j.eururo.2010.10.006.
    1. Horvath G., Järverud G. A. K., Järverud S., Horváth I. Human ovarian carcinomas detected by specific odor. Integrative Cancer Therapies. 2008;7(2):76–80. doi: 10.1177/1534735408319058.
    1. Horvath G., Andersson H., Paulsson G. Characteristic odour in the blood reveals ovarian carcinoma. BMC Cancer. 2010;10, article 643 doi: 10.1186/1471-2407-10-643.
    1. McCulloch M., Jezierski T., Broffman M., Hubbard A., Turner K., Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integrative Cancer Therapies. 2006;5(1):30–39. doi: 10.1177/1534735405285096.
    1. Pickel D. P., Manucy G. P., Walker D. B., Hall S. B., Walker J. C. Evidence for canine olfactory detection of melanoma. Applied Animal Behaviour Science. 2004;89(1-2):107–116. doi: 10.1016/j.applanim.2004.04.008.
    1. Willis C. M., Church S. M., Guest C. M., et al. Olfactory detection of human bladder cancer by dogs: proof of principle study. British Medical Journal. 2004;329(7468):712–714. doi: 10.1136/bmj.329.7468.712.
    1. Matsumura K., Opiekun M., Oka H., et al. Urinary volatile compounds as biomarkers for lung cancer: a proof of principle study using odor signatures in mouse models of lung cancer. PLoS ONE. 2010;5(1) doi: 10.1371/journal.pone.0008819.e8819
    1. Deng C., Zhang X., Li N. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2004;813(1-2):47–52. doi: 10.1016/j.jchromb.2004.09.007.
    1. Yazdanpanah M., Luo X., Lau R., Greenberg M., Fisher L. J., Lehotay D. C. Cytotoxic aldehydes as possible markers for childhood cancer. Free Radical Biology & Medicine. 1997;23(6):870–878. doi: 10.1016/s0891-5849(97)00070-1.
    1. Xue R., Dong L., Zhang S., et al. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry. 2008;22(8):1181–1186. doi: 10.1002/rcm.3466.
    1. Kouremenos K. A., Johansson M., Marriott P. J. Advances in gas chromatographic methods for the identification of biomarkers in cancer. Journal of Cancer. 2012;3(1):404–420. doi: 10.7150/jca.4956.
    1. Silva C. L., Passos M., Câmara J. S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—a powerful strategy for breast cancer diagnosis. Talanta. 2012;89:360–368. doi: 10.1016/j.talanta.2011.12.041.
    1. Huang J., Kumar S., Abbassi-Ghadi N., Španěl P., Smith D., Hanna G. B. Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer. Analytical Chemistry. 2013;85(6):3409–3416. doi: 10.1021/ac4000656.
    1. Guadagni R., Miraglia N., Simonelli A., et al. Solid-phase microextraction-gas chromatography-mass spectrometry method validation for the determination of endogenous substances: urinary hexanal and heptanal as lung tumor biomarkers. Analytica Chimica Acta. 2011;701(1):29–36. doi: 10.1016/j.aca.2011.05.035.
    1. Jobu K., Sun C., Yoshioka S., et al. Metabolomics study on the biochemical profiles of odor elements in urine of human with bladder cancer. Biological and Pharmaceutical Bulletin. 2012;35(4):639–642. doi: 10.1248/bpb.35.639.
    1. Mills G. A., Walker V. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials. Journal of Chromatography A. 2000;902(1):267–287. doi: 10.1016/s0021-9673(00)00767-6.
    1. León Z., García-Cañaveras J. C., Donato M. T., Lahoz A. Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis. 2013;34(19):2762–2775. doi: 10.1002/elps.201200605.
    1. Zimmermann D., Hartmann M., Moyer M. P., Nolte J., Baumbach J. I. Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics. 2007;3(1):13–17. doi: 10.1007/s11306-006-0038-y.
    1. Kwak J., Gallagher M., Ozdener M. H., et al. Volatile biomarkers from human melanoma cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2013;931:90–96. doi: 10.1016/j.jchromb.2013.05.007.
    1. Amal H., Ding L., Liu B.-B., et al. The scent fingerprint of hepatocarcinoma: in-vitro metastasis prediction with volatile organic compounds (VOCs) International Journal of Nanomedicine. 2012;7:4135–4146. doi: 10.2147/ijn.s32680.
    1. Sponring A., Filipiak W., Mikoviny T., et al. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro . Anticancer Research. 2009;29(1):419–426.
    1. Barash O., Peled N., Tisch U., Bunn P. A., Hirsch F. R., Haick H. Classification of lung cancer histology by gold nanoparticle sensors. Nanomedicine: Nanotechnology, Biology, and Medicine. 2012;8(5):580–589. doi: 10.1016/j.nano.2011.10.001.
    1. Brunner C., Szymczak W., Höllriegl V., et al. Discrimination of cancerous and non-cancerous cell lines by headspace-analysis with PTR-MS. Analytical and Bioanalytical Chemistry. 2010;397(6):2315–2324. doi: 10.1007/s00216-010-3838-x.
    1. Sulé-Suso J., Pysanenko A., Španěl P., Smith D. Quantification of acetaldehyde and carbon dioxide in the headspace of malignant and non-malignant lung cells in vitro by SIFT-MS. Analyst. 2009;134(12):2419–2425. doi: 10.1039/b916158a.
    1. Yu J., Wang D., Wang L., Wang P., Hu Y., Ying K. Detection of lung cancer with volatile organic biomarkers in exhaled breath and lung cancer cells. In: Prado M., Sberveglieri G. G., editors. Proceedings of the 13rd International Symposium on Olfaction and Electronic Nose; April 2009; Brescia, Italy. AIP Conference Proceedings; pp. 198–201.
    1. He J., Sinues P. M.-L., Hollmén F. M., Li X., Detmar M., Zenobi R. Fingerprinting breast cancer vs. normal mammary cells by mass spectrometric analysis of volatiles. Scientific Reports. 2014;4(5196):1–6. doi: 10.1038/srep05196.
    1. Chen J., Wang W., Lv S., et al. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Analytica Chimica Acta. 2009;650(1):3–9. doi: 10.1016/j.aca.2009.03.039.
    1. Hanai Y., Shimono K., Oka H., Baba Y., Yamazaki K., Beauchamp G. K. Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice. Cancer Cell International. 2012;12, article 7 doi: 10.1186/1475-2867-12-7.
    1. Filipiak W., Sponring A., Filipiak A., et al. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro . Cancer Epidemiology Biomarkers and Prevention. 2010;19(1):182–195. doi: 10.1158/1055-9965.epi-09-0162.
    1. Rutter A. V., Chippendale T. W. E., Yang Y., Španěl P., Smith D., Sulé-Suso J. Quantification by SIFT-MS of acetaldehyde released by lung cells in a 3D model. The Analyst. 2013;138(1):91–95. doi: 10.1039/C2AN36185J.
    1. Smith D., Wang T., Sulé-Suso J., Španěl P., El Haj A. Quantification of acetaldehyde released by lung cancer cells in vitro using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry. 2003;17(8):845–850. doi: 10.1002/rcm.984.
    1. Hughes P., Marshall D., Reid Y., Parkes H., Gelber C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? BioTechniques. 2007;43(5):575–586. doi: 10.2144/000112598.
    1. Acevedo C. A., Sánchez E. Y., Reyes J. G., Young M. E. Volatile organic compounds produced by human skin cells. Biological Research. 2007;40(3):347–355.
    1. Acevedo C. A., Sanchez E. Y., Reyes J. G., Young M. E. Volatile profiles of human skin cell cultures in different degrees of senescence. Journal of Chromatography B. 2010;878(3-4):449–455. doi: 10.1016/j.jchromb.2009.12.033.
    1. Hartmann M., Zimmermann D., Nolte J. Changes of the metabolism of the colon cancer cell line SW-480 under serum-free and serum-reduced growth conditions. In Vitro Cellular & Developmental Biology—Animal. 2009;44(10):458–463. doi: 10.1007/s11626-008-9133-x.
    1. Pyo J. S., Ju H. K., Park J. H., Kwon S. W. Determination of volatile biomarkers for apoptosis and necrosis by solid-phase microextraction–gas chromatography/mass spectrometry: a pharmacometabolomic approach to cisplatin's cytotoxicity to human lung cancer cell lines. Journal of Chromatography B. 2008;876(2):170–174. doi: 10.1016/j.jchromb.2008.10.031.
    1. Bajtarevic A., Ager C., Pienz M., et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer. 2009;9, article 348 doi: 10.1186/1471-2407-9-348.
    1. Kalluri U., Naiker M., Myers M. A. Cell culture metabolomics in the diagnosis of lung cancer—the influence of cell culture conditions. Journal of Breath Research. 2014;8(2):1–10. doi: 10.1088/1752-7155/8/2/027109.027109
    1. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology. 2004;14(3):198–206. doi: 10.1016/j.semradonc.2004.04.008.
    1. Filipiak W., Filipiak A., Sponring A., et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. Journal of Breath Research. 2014;8(2) doi: 10.1088/1752-7155/8/2/027111.027111
    1. Poli D., Goldoni M., Caglieri A., et al. Breath analysis in non small cell lung cancer patients after surgical tumour resection. Acta Biomedica de l'Ateneo Parmense. 2008;79(1):64–72.
    1. Poli D., Carbognani P., Corradi M., et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respiratory Research. 2005;6, article 71 doi: 10.1186/1465-9921-6-71.
    1. Phillips M., Altorki N., Austin J. H. M., et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomarkers. 2007;3(2):95–109.
    1. Phillips M., Altorki N., Austin J. H. M., et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clinica Chimica Acta. 2008;393(2):76–84. doi: 10.1016/j.cca.2008.02.021.
    1. Fuchs P., Loeseken C., Schubert J. K., Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. International Journal of Cancer. 2010;126(11):2663–2670. doi: 10.1002/ijc.24970.
    1. Gaspar E. M., Lucena A. F., da Costa J. D., das Neves H. C. Organic metabolites in exhaled human breath—a multivariate approach for identification of biomarkers in lung disorders. Journal of Chromatography A. 2009;1216(14):2749–2756. doi: 10.1016/j.chroma.2008.10.125.
    1. Phillips M., Cataneo R. N., Cummin A. R. C., et al. Detection of lung cancer with volatile markers in the breath. Chest. 2003;123(6):2115–2123. doi: 10.1378/chest.123.6.2115.
    1. Yu H., Xu L., Wang P. Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2005;826(1-2):69–74. doi: 10.1016/j.jchromb.2005.08.013.
    1. Toyokuni S. Molecular mechanisms of oxidative stress-induced carcinogenesis: from epidemiology to oxygenomics. IUBMB Life. 2008;60(7):441–447. doi: 10.1002/iub.61.
    1. Eggink M., Wijtmans M., Kretschmer A., et al. Targeted LC-MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA. Analytical and Bioanalytical Chemistry. 2010;397(2):665–675. doi: 10.1007/s00216-010-3575-1.
    1. Romero F. J., Bosch-Morell F., Romero M. J., et al. Lipid peroxidation products and antioxidants in human disease. Environmental Health Perspectives. 1998;106(5):1229–1234. doi: 10.1289/ehp.98106s51229.
    1. Kneepkers C. M., Lepage G., Roy C. C. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radical Biology and Medicine. 1994;17(2):127–160.
    1. Mitsui T., Kondo T. Inadequacy of theoretical basis of breath methylated alkane contour for assessing oxidative stress. Clinica Chimica Acta. 2003;333(1):p. 91. doi: 10.1016/s0009-8981(03)00173-6.
    1. Cancilla D. A., Que Hee S. S. O-(2,3,4,5,6-pentafluorophenyl)methylhydroxylamine hydrochloride: a versatile reagent for the determination of carbonyl-containing compounds. Journal of Chromatography A. 1992;627(1-2):1–16. doi: 10.1016/0021-9673(92)87181-7.
    1. Li N., Deng C., Yin X., Yao N., Shen X., Zhang X. Gas chromatography–mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Analytical Biochemistry. 2005;342(2):318–326. doi: 10.1016/j.ab.2005.04.024.
    1. Lili L., Xu H., Song D., Cui Y., Hu S., Zhang G. Analysis of volatile aldehyde biomarkers in human blood by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method by high performance liquid chromatography. Journal of Chromatography A. 2010;1217(16):2365–2370. doi: 10.1016/j.chroma.2010.01.081.
    1. Poli D., Goldoni M., Corradi M., et al. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2010;878(27):2643–2651. doi: 10.1016/j.jchromb.2010.01.022.
    1. Kataoka H., Saito K. Recent advances in SPME techniques in biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis. 2011;54(5):926–950. doi: 10.1016/j.jpba.2010.12.010.
    1. Kataoka H. Current developments and future trends in solid-phase microextraction techniques for pharmaceutical and biomedical analyses. Analytical Sciences. 2011;27(9):893–905. doi: 10.2116/analsci.27.893.
    1. Zhang Z., Ma Y., Li G. Progress on the analytical methodology for biological volatile organic compounds. Analytical Methods. 2013;5(1):20–29. doi: 10.1039/c2ay26082d.
    1. Bojko B., Pawliszyn J. The benefits of using solid-phase microextraction as a greener sample preparation technique. Bioanalysis. 2012;4(11):1263–1265. doi: 10.4155/bio.12.105.
    1. Kleeberg K. K., Dobberstein N., Hinrichsen N., Muller A., Weber P., Steinhart H. Sampling procedures with special focus on automatization. In: Nollet L. M. L., Toldar F., editors. Advances in Food Diagnostics. Oxford, UK: Blackwell; 2007. pp. 253–294.
    1. Kolb B. Headspace sampling with capillary columns. Journal of Chromatography A. 1999;842(1-2):163–205. doi: 10.1016/s0021-9673(99)00073-4.
    1. Pawliszyn J. Theory of solid-phase microextraction. Journal of Chromatographic Science. 2000;38(7):270–278. doi: 10.1093/chromsci/38.7.270.
    1. Shirey R. E. SPME commercial devices and fibre coatings. In: Pawliszyn J., editor. Handbook of Solid Phase Microextraction. Waterloo, Canada: Chemical Industry Press; 2009. pp. 87–115.
    1. Ligor T., Ligor M., Amann A., et al. The analysis of healthy volunteers' exhaled breath by the use of solid-phase microextraction and GC-MS. Journal of Breath Research. 2008;2(4):1–8. doi: 10.1088/1752-7155/2/4/046006.046006
    1. Hyšpler R., Crhová Š., Gasparič J., Zadák Z., Čížková M., Balasová V. Determination of isoprene in human expired breath using solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications. 2000;739(1):183–190. doi: 10.1016/S0378-4347(99)00423-5.
    1. Ligor T., Szeliga J., Jackowski M., Buszewski B. Preliminary study of volatile organic compounds from breath and stomach tissue by means of solid phase microextraction and gas chromatography-mass spectrometry. Journal of Breath Research. 2007;1(1) doi: 10.1088/1752-7155/1/1/016001.016001
    1. Duan C., Shen Z., Wu D., Guan Y. Recent developments in solid-phase microextraction for on-site sampling and sample preparation. TrAC—Trends in Analytical Chemistry. 2011;30(10):1568–1574. doi: 10.1016/j.trac.2011.08.005.
    1. Silva E. A. S., Risticevic S., Pawliszyn J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trends in Analytical Chemistry. 2013;43:24–36. doi: 10.1016/j.trac.2012.10.006.
    1. Mochalski P., Sponring A., King J., Unterkofler K., Troppmair J., Amann A. Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro . Cancer Cell International. 2013;13(1, article 72) doi: 10.1186/1475-2867-13-72.
    1. Barash O., Peled N., Hirsch F. R., Haick H. Sniffing the unique ‘Odor Print’ of non-small-cell lung cancer with gold nanoparticles. Small. 2009;5(22):2618–2624. doi: 10.1002/smll.200900937.
    1. Vrana B., Mills G. A., Allan I. J., et al. Passive sampling techniques for monitoring pollutants in water. Trends in Analytical Chemistry. 2005;24(10):845–868. doi: 10.1016/j.trac.2005.06.006.
    1. Shin H. W., Umber B. J., Meinardi S., et al. Acetaldehyde and hexanaldehyde from cultured white cells. Journal of Translational Medicine. 2009;7, article 31 doi: 10.1186/1479-5876-7-31.
    1. Adiguzel Y., Kulah H. Breath sensors for lung cancer diagnosis. Biosensors and Bioelectronics. 2015;65:121–138. doi: 10.1016/j.bios.2014.10.023.
    1. Konvalina G., Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Accounts of Chemical Research. 2014;47(1):66–76. doi: 10.1021/ar400070m.
    1. Li W., Liu H. Y., Jia Z. R., et al. Advances in the early detection of lung cancer using analysis of volatile organic compounds from imaging to sensors. Asian Pacific Journal of Cancer Prevention. 2014;15(11):4377–4384. doi: 10.7314/apjcp.2014.15.11.4377.
    1. Righettoni M., Amann A., Pratsinis S. E. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today. 2015;18(3):163–171. doi: 10.1016/j.mattod.2014.08.017.
    1. Nakhleh M. K., Broza Y. Y., Haick H. Monolayer-capped gold nanoparticles for disease detection from breath. Nanomedicine. 2014;9(13):1991–2002. doi: 10.2217/nnm.14.121.
    1. Di Natale C., Paolesse R., Martinelli E., Capuano R. Solid-state gas sensors for breath analysis: a review. Analytica Chimica Acta. 2014;824:1–17. doi: 10.1016/j.aca.2014.03.014.
    1. Broza Y. Y., Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine. 2013;8(5):785–806. doi: 10.2217/nnm.13.64.
    1. Wehinger A., Schmid A., Mechtcheriakov S., et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. International Journal of Mass Spectrometry. 2007;265(1):49–59. doi: 10.1016/j.ijms.2007.05.012.
    1. Kushch I., Schwarz K., Schwentner L., et al. Compounds enhanced in a mass spectrometric profile of smokers' exhaled breath versus non-smokers as determined in a pilot study using PTR-MS. Journal of Breath Research. 2008;2(2) doi: 10.1088/1752-7155/2/2/026002.026002
    1. Lindinger W., Hansel A., Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS). Medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Processes. 1998;173(3):191–241. doi: 10.1016/s0168-1176(97)00281-4.
    1. Smith D., Španěl P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrometry Reviews. 2005;24(5):661–700. doi: 10.1002/mas.20033.
    1. Ionicon Analytik. “PTR-QMS 300” on the IONICON Analytik Website. 2013. .
    1. Westhoff M., Litterst P., Freitag L., Urfer W., Bader S., Baumbach J.-I. Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study. Thorax. 2009;64(9):744–748. doi: 10.1136/thx.2008.099465.
    1. Darwiche K., Baumbach J. I., Sommerwerck U., Teschler H., Freitag L. Bronchoscopically obtained volatile biomarkers in lung cancer. Lung. 2011;189(6):445–452. doi: 10.1007/s00408-011-9324-1.
    1. Ulanowska A., Ligor M., Amann A., Buszewski B. Determination of volatile organic compounds in exhaled breath by ion mobility spectrometry. Chemia Analityczna. 2008;53(6):953–965.
    1. Lord H., Yu Y., Segal A., Pawliszyn J. Breath analysis and monitoring by membrane extraction with sorbent interface. Analytical Chemistry. 2002;74(21):5650–5657. doi: 10.1021/ac025863k.
    1. Handa H., Usuba A., Maddula S., Baumbach J. I., Mineshita M., Miyazawa T. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry. PLoS ONE. 2014;9(12) doi: 10.1371/journal.pone.0114555.e114555
    1. Peng G., Hakim M., Broza Y. Y., et al. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. British Journal of Cancer. 2010;103(4):542–551. doi: 10.1038/sj.bjc.6605810.
    1. Hagleitner C., Hierlemann A., Lange D., et al. Smart single-chip gas sensor microsystem. Nature. 2001;414(6861):293–296. doi: 10.1038/35104535.
    1. Dragonieri S., Annema J. T., Schot R., et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009;64(2):166–170. doi: 10.1016/j.lungcan.2008.08.008.
    1. Mazzone P. J., Hammel J., Dweik R., et al. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax. 2007;62(7):565–568. doi: 10.1136/thx.2006.072892.
    1. Khalid T., White P., Costello B. D. L., et al. A pilot study combining a GC-sensor device with a statistical model for the identification of bladder cancer from urine headspace. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0069602.e69602
    1. Röck F., Barsan N., Weimar U. Electronic nose: current status and future trends. Chemical Reviews. 2008;108(2):705–725. doi: 10.1021/cr068121q.
    1. Gao D., Ji J., Gong J., Cai C. Quantitative analysis of different volatile organic compounds using an improved electronic nose. Measurement Science and Technology. 2012;23(10) doi: 10.1088/0957-0233/23/10/105103.105103
    1. Oh E. H., Song H. S., Park T. H. Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme and Microbial Technology. 2011;48(6-7):427–437. doi: 10.1016/j.enzmictec.2011.04.003.
    1. Biasioli F., Yeretzian C., Märk T. D., Dewulf J., van Langenhove H. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends in Analytical Chemistry. 2011;30(7):1003–1017. doi: 10.1016/j.trac.2011.04.005.
    1. Di Natale C., Macagnano A., Martinelli E., et al. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosensors and Bioelectronics. 2003;18(10):1209–1218. doi: 10.1016/s0956-5663(03)00086-1.
    1. Peled N., Hakim M., Bunn P. A., et al. Non-invasive breath analysis of pulmonary nodules. Journal of Thoracic Oncology. 2012;7(10):1528–1533. doi: 10.1097/jto.0b013e3182637d5f.
    1. Bartolazzi A., Santonico M., Pennazza G., et al. A sensor array and GC study about VOCs and cancer cells. Sensors and Actuators, B: Chemical. 2010;146(2):483–488. doi: 10.1016/j.snb.2009.11.046.
    1. Kato S., Burke P. J., Fenick D. J., Taatjes D. J., Bierbaum V. M., Koch T. H. Mass spectrometric measurement of formaldehyde generated in breast cancer cells upon treatment with anthracycline antitumor drugs. Chemical Research in Toxicology. 2000;13(6):509–516. doi: 10.1021/tx000008m.
    1. Kato S., Burke P. J., Koch T. H., Bierbaum V. M. Formalehyde in human cancer cells: detection by preconcentration-chemical ionization mass spectrometry. Analytical Chemistry. 2001;73(13):2992–2997. doi: 10.1021/ac001498q.
    1. Kato S., Post G. C., Bierbaum V. M., Koch T. H. Chemical ionization mass spectrometric determination of acrolein in human breast cancer cells. Analytical Biochemistry. 2002;305(2):251–259. doi: 10.1006/abio.2002.5682.

Source: PubMed

3
Předplatit