First-in-human phase I study of PRS-050 (Angiocal), an Anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors

Klaus Mross, Heike Richly, Richard Fischer, Dirk Scharr, Martin Büchert, Angelika Stern, Hendrik Gille, Laurent P Audoly, Max E Scheulen, Klaus Mross, Heike Richly, Richard Fischer, Dirk Scharr, Martin Büchert, Angelika Stern, Hendrik Gille, Laurent P Audoly, Max E Scheulen

Abstract

Background: To report the nonrandomized first-in-human phase I trial of PRS-050, a novel, rationally engineered Anticalin based on human tear lipocalin that targets and antagonizes vascular endothelial growth factor A (VEGF-A).

Methods: Patients with advanced solid tumors received PRS-050 at 0.1 mg/kg to 10 mg/kg by IV in successive dosing cohorts according to the 3+3 escalation scheme. The primary end point was safety.

Results: Twenty-six patients were enrolled; 25 were evaluable. Two patients experienced dose-limiting toxicity, comprising grade (G) 3 hypertension and G3 pyrexia, respectively. The maximum tolerated dose was not reached. Most commonly reported treatment-emergent adverse events (AEs) included chills (52%; G3, 4%), fatigue (52%; G3, 4%), hypertension (44%; G3, 16%), and nausea (40%, all G1/2). No anti-PRS-050 antibodies following multiple administration of the drug were detected. PRS-050 showed dose-proportional pharmacokinetics (PK), with a terminal half-life of approximately 6 days. Free VEGF-A was detectable at baseline in 9/25 patients, becoming rapidly undetectable after PRS-050 infusion for up to 3 weeks. VEGF-A/PRS-050 complex was detectable for up to 3 weeks at all dose levels, including in patients without detectable baseline-free VEGF-A. We also detected a significant reduction in circulating matrix metalloproteinase 2, suggesting this end point could be a pharmacodynamic (PD) marker of the drug's activity.

Conclusions: PRS-050, a novel Anticalin with high affinity for VEGF-A, was well-tolerated when administered at the highest dose tested, 10 mg/kg. Based on target engagement and PK/PD data, the recommended phase II dose is 5 mg/kg every 2 weeks administered as a 120-minute infusion.

Trial registration: ClinicalTrials.gov NCT01141257 https://ichgcp.net/clinical-trials-registry/NCT01141257.

Conflict of interest statement

Competing Interests: This study was sponsored by Pieris AG, the employer of HG and LPA. AS is affiliated to Stern Consult. There is a pending patent (PCT/EP2012/072406) relating to this study: "Novel uses of VEGF antagonists", inventors HG and LPA. KM and MES have received a travel grant from Pieris AG, and AS and MES have consulted for Pieris AG. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1. Patient disposition.
Figure 1. Patient disposition.
Patients who completed the single treatment and repeated weekly dosing period were specified to have completed as scheduled. aA fourth patient was enrolled by mistake. bOne patient was treated with the wrong dose of study medication. cWithdrawal of consent. dDisease progression. eThe patient erroneously treated with wrong dose of study medication was withdrawn (same patient as in footnote b). fPatient went to primary care physician for further visits. gAdverse event. N=total number of patients; n=number of patients in the subgroup.
Figure 2. Free PRS-050 drug levels are…
Figure 2. Free PRS-050 drug levels are in excess of VEGF-A/PRS-050 complex concentrations.
Molar plasma concentrations of unbound PRS-050 (red, right Y-axis) and VEGF-A/PRS-050 complex (blue, left Y-axis) in patients treated with 1.5 mg/kg PRS-050 (n = 6) ±SD.
Figure 3. Changes in level of serum…
Figure 3. Changes in level of serum MMP-2 after treatment with a single dose of PRS-050.
Note that dose levels are depicted according to dosing cohort (±SE).

References

    1. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364. doi:10.1016/S0092-8674(00)80108-7. PubMed: .
    1. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581-611. doi:10.1210/er.2003-0027. PubMed: .
    1. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23: 1011-1027. PubMed: .
    1. Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6: 209. doi:10.1186/gb-2005-6-2-209. PubMed: .
    1. Rahimi N (2006) VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front Biosci 11: 818-829. PubMed: .
    1. Kim KJ, Li B, Winer J, Armanini M, Gillett N et al. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-844. doi:10.1038/362841a0. PubMed: .
    1. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367: 576-579. doi:10.1038/367576a0. PubMed: .
    1. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S et al. (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10: 25-34. doi:10.1016/S1470-2045(08)70285-7. PubMed: .
    1. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH et al. (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368: 1329-1338. doi:10.1016/S0140-6736(06)69446-4. PubMed: .
    1. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356: 115-124. doi:10.1056/NEJMoa065044. PubMed: .
    1. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA et al. (2008) Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26: 5422-5428. doi:10.1200/JCO.2008.16.9847. PubMed: .
    1. Mross K, Drevs J, Müller M, Medinger M, Marmé D et al. (2005) Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 41: 1291-1299. doi:10.1016/j.ejca.2005.03.005. PubMed: .
    1. Mross K, Frost A, Scheulen ME, Krauss J, Strumberg D et al. (2011) Phase I study of telatinib (BAY 57-9352): analysis of safety, pharmacokinetics, tumor efficacy, and biomarkers in patients with colorectal cancer. Vasc Cell 3: 16. doi:10.1186/2045-824X-3-16. PubMed: .
    1. Schlehuber S, Skerra A (2005) Lipocalins in drug discovery: from natural ligand-binding proteins to anticalins. Drug Discov Today 10: 23-33. doi:10.1016/S1359-6446(04)03294-5. PubMed: .
    1. Breustedt DA, Schönfeld DL, Skerra A (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764: 161-173. doi:10.1016/j.bbapap.2005.12.006. PubMed: .
    1. Dartt DA (2011) Tear lipocalin: structure and function. Ocul Surf 9: 126-138. doi:10.1016/S1542-0124(11)70022-2. PubMed: .
    1. Skerra A (2000) Lipocalins as a scaffold. Biochim Biophys Acta 1482: 337-350. doi:10.1016/S0167-4838(00)00145-X. PubMed: .
    1. Schönfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H et al. (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci U S A 106: 8198-8203. doi:10.1073/pnas.0813399106. PubMed: .
    1. Gebauer M, Skerra A (2012) Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol 503: 157-188. doi:10.1016/B978-0-12-396962-0.00007-0. PubMed: .
    1. Skerra A (2007) Anticalins as alternative binding proteins for therapeutic use. Curr Opin Mol Ther 9: 336-344. PubMed: .
    1. Breustedt DA, Korndörfer IP, Redl B, Skerra A (2005) The 1.8-A crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem 280: 484-493. PubMed: .
    1. Olwill SA, Joffroy C, Gille H, Vigna E, Matschiner G et al. (2013) A highly potent and specific MET therapeutic protein antagonist with both ligand-dependent and ligand-independent activity. Mol Cancer Ther 12: 2459-2471. doi:10.1158/1535-7163.MCT-13-0318. PubMed: .
    1. Gille H, Huelsmeyer M, Christian HJ, Matschiner G, Trentmann S et al. (; April 12-162008) Discovery and characterization of a novel Anticalin with potent in vivo antagonistic activity towards VEGF-A [Poster #4077]. Presented at the American Association for Cancer Research (AACR) Annual Meeting; April 12-16, 2008.
    1. Mirjolet JF, Sourzat B, Tizon X, Bichat F, Hohlbaum AM et al. (2009) The VEGF antagonist PRS-050 decreases vascular permeability in tumors and inhibits tumor growth: an analysis using dynamic contrast-enhanced magnetic resonance imaging [Poster #2318]. Presented at the American Association for Cancer Research (AACR) Annual Meeting; April 18-22, 2009.
    1. Gille H, Christian HJ, Huelsmeyer M, Meyer T, Amirkhosravi A et al. (2011) Nonclinical pharmacokinetics and safety of Angiocal, the first VEGF-A-specific alternative scaffold protein entering clinical development for cancer [Poster #3632]. Presented at the American Association for Cancer Research (AACR) Annual Meeting; April 2-6, 2011.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS et al. (2000) New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205-216. doi:10.1093/jnci/92.3.205. PubMed: .
    1. Scheffler K (2003) On the transient phase of balanced SSFP sequences. Magn Reson Med 49: 781–783. doi:10.1002/mrm.10421. PubMed: .
    1. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7: 91–101. doi:10.1002/jmri.1880070113. PubMed: .
    1. Heinzerling JH, Huerta S (2006) Bowel perforation from bevacizumab for the treatment of metastatic colon cancer: incidence, etiology, and management. Curr Surg 63: 334-337. doi:10.1016/j.cursur.2006.06.002. PubMed: .
    1. Mordenti J, Thomsen K, Licko V, Chen H, Meng YG (1999) Efficacy and concentration-response of murine anti-VEGF monoclonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol 27: 14-21. doi:10.1177/019262339902700104. PubMed: .
    1. Song X, Long SR, Barber B, Kassed CA, Healey M et al. (2012) Systematic review on infusion reactions associated with chemotherapies and monoclonal antibodies for metastatic colorectal cancer. Curr Clin Pharmacol 7: 56-65. doi:10.2174/157488412799218806. PubMed: .
    1. Launay-Vacher V, Deray G (2009) Hypertension and proteinuria: a class-effect of antiangiogenic therapies. Anticancer Drugs 20: 81-82. doi:10.1097/CAD.0b013e3283161012. PubMed: .
    1. Rini BI, Cohen DP, Lu DR, Chen I, Hariharan S et al. (2011) Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst 103: 763-773. doi:10.1093/jnci/djr128. PubMed: .
    1. Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD (2010) Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol 30: 591-601. doi:10.1016/j.semnephrol.2010.09.007. PubMed: .
    1. Roodhart JM, Langenberg MH, Witteveen E, Voest EE (2008) The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway. Curr Clin Pharmacol 3: 132-143. doi:10.2174/157488408784293705. PubMed: .
    1. George S, Reichardt P, Lechner T, Li S, Cohen DP et al. (2012) Hypertension as a potential biomarker of efficacy in patients with gastrointestinal stromal tumor treated with sunitinib. Ann Oncol 23: 3180-3187. doi:10.1093/annonc/mds179. PubMed: .
    1. Österlund P, Soveri LM, Isoniemi H, Poussa T, Alanko T et al. (2011) Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer 104: 599-604. doi:10.1038/bjc.2011.2. PubMed: .
    1. Tahover E, Uziely B, Salah A, Temper M, Peretz T et al. (2013) Hypertension as a predictive biomarker in bevacizumab treatment for colorectal cancer patients. Med Oncol 30: 327. doi:10.1007/s12032-012-0327-4. PubMed: .
    1. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ et al. (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349: 427-434. doi:10.1056/NEJMoa021491. PubMed: .
    1. Patel TV, Morgan JA, Demetri GD, George S, Maki RG et al. (2008) A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst 100: 282-284. doi:10.1093/jnci/djm311. PubMed: .
    1. He H, Venema VJ, Gu X, Venema RC, Marrero MB et al. (1999) Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 274: 25130-25135. doi:10.1074/jbc.274.35.25130. PubMed: .
    1. Shen BQ, Lee DY, Zioncheck TF (1999) Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway. J Biol Chem 274: 33057-33063. doi:10.1074/jbc.274.46.33057. PubMed: .
    1. Wei W, Jin H, Chen ZW, Zioncheck TF, Yim AP et al. (2004) Vascular endothelial growth factor-induced nitric oxide- and PGI2-dependent relaxation in human internal mammary arteries: a comparative study with KDR and Flt-1 selective mutants. J Cardiovasc Pharmacol 44: 615-621. doi:10.1097/00005344-200411000-00016. PubMed: .
    1. Drevs J, Zirrgiebel U, Schmidt-Gersbach CI, Mross K, Medinger M et al. (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16: 558-565. doi:10.1093/annonc/mdi118. PubMed: .
    1. Mross K, Fasol U, Frost A, Benkelmann R, Kuhlmann J et al. (2009) DCE-MRI assessment of the effect of vandetanib on tumor vasculature in patients with advanced colorectal cancer and liver metastases: a randomized phase I study. J Angiogenes Res 1: 5. doi:10.1186/2040-2384-1-5. PubMed: .
    1. Mross K, Frost A, Steinbild S, Hedbom S, Büchert M et al. (2012) A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 18: 2658-2667. doi:10.1158/1078-0432.CCR-11-1900. PubMed: .
    1. Jones SF, Spigel DR, Yardley DA, Thompson DF, Burris HA III (2011) A phase I trial of vatalanib (PTK/ZK) in combination with bevacizumab in patients with refractory and/or advanced malignancies. Clin Adv Hematol Oncol 9: 845-852. PubMed: .
    1. Langenberg MH, Witteveen PO, Roodhart J, Lolkema MP, Verheul HM et al. (2011) Phase I evaluation of telatinib, a VEGF receptor tyrosine kinase inhibitor, in combination with bevacizumab in subjects with advanced solid tumors. Ann Oncol 22: 2508-2515. doi:10.1093/annonc/mdq767. PubMed: .
    1. Hu J, Chen C, Su Y, Du J, Qian X et al. (2012) Vascular endothelial growth factor promotes the expression of cyclooxygenase 2 and matrix metalloproteinases in Lewis lung carcinoma cells. Exp Ther Med 4: 1045-1050. PubMed: .
    1. Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82: 52-55. doi:10.1054/bjoc.1999.0876. PubMed: .
    1. Hua H, Li M, Luo T, Yin Y, Jiang Y (2011) Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 68: 3853-3868. doi:10.1007/s00018-011-0763-x. PubMed: .
    1. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T et al. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737-744. doi:10.1038/35036374. PubMed: .
    1. Collen A, Hanemaaijer R, Lupu F, Quax PH, van Lent N et al. (2003) Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 101: 1810-1817. doi:10.1182/blood-2002-05-1593. PubMed: .
    1. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY et al. (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446: 765-770. doi:10.1038/nature05760. PubMed: .
    1. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H et al. (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048-1051. PubMed: .
    1. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S et al. (2003) Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 63: 5224-5229. PubMed: .
    1. Dean RA, Butler GS, Hamma-Kourbali Y, Delbé J, Brigstock DR et al. (2007) Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol 27: 8454-8465. doi:10.1128/MCB.00821-07. PubMed: .
    1. Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300: 2277-2285. doi:10.1001/jama.2008.656. PubMed: .
    1. Rudge JS, Holash J, Hylton D, Russell M, Jiang S et al. (2007) VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A 104: 18363-18370. doi:10.1073/pnas.0708865104. PubMed: .
    1. Gerber HP, Wu X, Yu L, Wiesmann C, Liang XH et al. (2007) Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies. Proc Natl Acad Sci U S A 104: 3478-3483. doi:10.1073/pnas.0611492104. PubMed: .
    1. Meyer T, Robles-Carrillo L, Robson T, Langer F, Desai H et al. (2009) Bevacizumab immune complexes activate platelets and induce thrombosis in FCGR2A transgenic mice. J Thromb Haemost 7: 171-181. doi:10.1111/j.1538-7836.2008.03212.x. PubMed: .

Source: PubMed

3
Předplatit