Association of Retinal Nerve Fiber Layer Thickness With Brain Alterations in the Visual and Limbic Networks in Elderly Adults Without Dementia

Juan Luis Méndez-Gómez, Amandine Pelletier, Marie-Bénédicte Rougier, Jean-François Korobelnik, Cédric Schweitzer, Marie-Noëlle Delyfer, Gwenaëlle Catheline, Solène Monfermé, Jean-François Dartigues, Cécile Delcourt, Catherine Helmer, Juan Luis Méndez-Gómez, Amandine Pelletier, Marie-Bénédicte Rougier, Jean-François Korobelnik, Cédric Schweitzer, Marie-Noëlle Delyfer, Gwenaëlle Catheline, Solène Monfermé, Jean-François Dartigues, Cécile Delcourt, Catherine Helmer

Abstract

Importance: The eye is a sensory organ that is easily accessible for imaging techniques, allowing the measurement of the retinal nerve fiber layer (RNFL) thickness. The eye is part of the central nervous system, and its neurons may be susceptible to degeneration; therefore, changes in the RNFL thickness may reflect microstructural and volume alterations in the brain.

Objective: To explore the association between the peripapillary RNFL thickness and brain alterations in the visual and limbic networks in elderly people without dementia.

Design, setting, and participants: Cross-sectional analysis of the Three-City/Antioxydants, Lipides Essentiels, Nutrition et Maladies Oculaires (Alienor) Study cohort (April 2009 to December 2010). The dates of analysis were July 2017 to August 2018. The setting was a population-based study in France. The brain volume analysis included 104 participants, and the diffusion tensor imaging analysis included 79 participants.

Main outcomes and measures: Global RNFL was assessed by spectral-domain optical coherence tomography. Brain volumes were assessed via T1-weighted magnetic resonance imaging by measurement of the global white and gray matter fractions and the hippocampal fraction. Brain microstructural alterations were assessed with diffusion tensor imaging at the level of the posterior thalamic radiations, the limbic system tracts (the fornix and cingulum bundles), and the posterior limb of the internal capsule (control region). Linear regression models adjusted for several confounders were performed.

Results: Among a total of 104 participants, the mean (SD) age was 80.8 (3.9) years, and the cohort was 56.7% women (n = 59). The mean (SD) global RNFL thickness was 89.3 (12.9) µm. A thicker RNFL was associated with a greater hippocampal fraction (quantity of increase β = 0.013; 95% CI, 0.001-0.025 per 10-μm increase in the RNFL thickness) and better diffusion tensor imaging variables in the global cingulum (mean diffusivity β = -0.007; 95% CI, -0.015 to -0.000) and the hippocampal part of the cingulum (mean diffusivity β = -0.009; 95% CI, -0.016 to -0.002 and radial diffusivity β = -0.010; 95% CI, -0.018 to -0.002) and the posterior thalamic radiations (fractional anisotropy β = 0.008; 95% CI, 0.000-0.017). No significant associations were found with other magnetic resonance imaging volumes or with other diffusion tensor imaging variables. In particular, there was no significant association with the control region of interest.

Conclusions and relevance: Results of this study suggest that in elderly individuals without dementia, a thicker RNFL was associated with better magnetic resonance imaging variables both in a region that included the visual pathways and in regions particularly involved in the neurodegenerative processes of Alzheimer disease.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Rougier reported being a consultant for Allergan and Bausch & Lomb; reported receiving funding for conferences from Bayer, Carl Zeiss Meditec, AbbVie, Laboratoires Théa, and Novartis; and reported receiving personal fees from Bayer, AbbVie, Allergan, Novartis, and Carl Zeiss Meditec. Dr Korobelnik reported being a consultant for Alcon, Allergan, Bayer, Carl Zeiss Meditec, Novartis, and Laboratoires Théa and reported receiving research grants from Roche and Alimera Sciences. Dr Schweitzer reported receiving personal fees from Laboratoires Théa, Alcon, Novartis, and Allergan. Dr Delyfer reported receiving advisory board or travel funding from Théa Laboratories, Bayer, and Novartis; reported receiving grants from Laboratoires Théa; and reported receiving personal fees from Allergan, Bayer, Novartis, and Bausch & Lomb. Dr Dartigues reported receiving research support and grants from Roche. Dr Delcourt reported receiving grants from Laboratoires Théa, Fondation Voir et Entendre, Association Retina France, and Conseil Regional d’Aquitaine; reported receiving personal fees from Allergan, Bausch & Lomb, Laboratoires Théa, Novartis, and Roche; and reported being a consultant for Allergan, Bausch & Lomb, Novartis, Roche, and Laboratoires Théa. Dr Helmer reported receiving grants from France Alzheimer (a charitable foundation) and reported receiving grants from Roche. All funding received by the authors was outside of the present work. No other disclosures were reported.

Figures

Figure.. Flowchart of the Selected Participants
Figure.. Flowchart of the Selected Participants
Alienor indicates Antioxydants, Lipides Essentiels, Nutrition et Maladies Oculaires; DTI, diffusion tensor imaging; MRI, magnetic resonance imaging; and RNFL, retinal nerve fiber layer. aValid MRI images without the presence of tumors or major cerebrovascular pathologies and showing good-quality processes.

References

    1. London A, Benhar I, Schwartz M. The retina as a window to the brain: from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):-. doi:10.1038/nrneurol.2012.227
    1. Jindahra P, Hedges TR, Mendoza-Santiesteban CE, Plant GT. Optical coherence tomography of the retina: applications in neurology. Curr Opin Neurol. 2010;23(1):16-23. doi:10.1097/WCO.0b013e328334e99b
    1. den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;6:162-170.
    1. Thomson KL, Yeo JM, Waddell B, Cameron JR, Pal S. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimers Dement (Amst). 2015;1(2):136-143.
    1. Mutlu U, Colijn JM, Ikram MA, et al. . Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study [published online June 25, 2018]. JAMA Neurol.
    1. Gabilondo I, Martínez-Lapiscina EH, Martínez-Heras E, et al. . Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol. 2014;75(1):98-107. doi:10.1002/ana.24030
    1. Klistorner A, Sriram P, Vootakuru N, et al. . Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology. 2014;82(24):2165-2172. doi:10.1212/WNL.0000000000000522
    1. Sabry HM, Ibrahim MA. Optical coherence tomography of retinal nerve fibre layer in multiple sclerosis and its correlation with the disease evolution. Egypt J Neurol Psychiat Neurosurg. 2010;47(1):21-27.
    1. Scheel M, Finke C, Oberwahrenbrock T, et al. . Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study. Mult Scler. 2014;20(14):1904-1907. doi:10.1177/1352458514535128
    1. Siger M, Dziegielewski K, Jasek L, et al. . Optical coherence tomography in multiple sclerosis: thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol. 2008;255(10):1555-1560. doi:10.1007/s00415-008-0985-5
    1. Murphy MC, Conner IP, Teng CY, et al. . Retinal structures and visual cortex activity are impaired prior to clinical vision loss in glaucoma. Sci Rep. 2016;6:31464. doi:10.1038/srep31464
    1. Ong YT, Hilal S, Cheung CY, et al. . Retinal neurodegeneration on optical coherence tomography and cerebral atrophy. Neurosci Lett. 2015;584:12-16. doi:10.1016/j.neulet.2014.10.010
    1. Casaletto KB, Ward ME, Baker NS, et al. . Retinal thinning is uniquely associated with medial temporal lobe atrophy in neurologically normal older adults. Neurobiol Aging. 2017;51:141-147. doi:10.1016/j.neurobiolaging.2016.12.011
    1. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30(6):749-761. doi:10.1016/j.neubiorev.2006.06.002
    1. Stoub TR, Barnes CA, Shah RC, Stebbins GT, Ferrari C, deToledo-Morrell L. Age-related changes in the mesial temporal lobe: the parahippocampal white matter region. Neurobiol Aging. 2012;33(7):1168-1176. doi:10.1016/j.neurobiolaging.2011.02.010
    1. Pelletier A, Periot O, Dilharreguy B, et al. . Age-related modifications of diffusion tensor imaging parameters and white matter hyperintensities as inter-dependent processes. Front Aging Neurosci. 2016;7:255. doi:10.3389/fnagi.2015.00255
    1. 3C Study Group Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology. 2003;22(6):316-325. doi:10.1159/000072920
    1. Delcourt C, Korobelnik JF, Barberger-Gateau P, et al. . Nutrition and age-related eye diseases: the Alienor (Antioxydants, Lipides Essentiels, Nutrition et Maladies Oculaires) Study. J Nutr Health Aging. 2010;14(10):854-861. doi:10.1007/s12603-010-0131-9
    1. Rougier MB, Korobelnik JF, Malet F, et al. . Retinal nerve fibre layer thickness measured with SD-OCT in a population-based study of French elderly subjects: the Alienor Study. Acta Ophthalmol. 2015;93(6):539-545. doi:10.1111/aos.12658
    1. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders 4th ed. Washington, DC: American Psychiatric Association; 1994.
    1. Savini G, Barboni P, Parisi V, Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol. 2012;96(1):57-61. doi:10.1136/bjo.2010.196782
    1. Ashburner J, Friston KJ. Voxel-based morphometry: the methods. Neuroimage. 2000;11(6, pt 1):805-821. doi:10.1006/nimg.2000.0582
    1. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907-922. doi:10.1016/j.neuroimage.2011.02.046
    1. Pelletier A, Periot O, Dilharreguy B, et al. . Structural hippocampal network alterations during healthy aging: a multi-modal MRI study. Front Aging Neurosci. 2013;5:84. doi:10.3389/fnagi.2013.00084
    1. Alexander AL, Hurley SA, Samsonov AA, et al. . Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011;1(6):423-446. doi:10.1089/brain.2011.0071
    1. Hua K, Zhang J, Wakana S, et al. . Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage. 2008;39(1):336-347. Medline: doi:10.1016/j.neuroimage.2007.07.053
    1. Gabriele ML, Wollstein G, Ishikawa H, et al. . Three dimensional optical coherence tomography imaging: advantages and advances. Prog Retin Eye Res. 2010;29(6):556-579. doi:10.1016/j.preteyeres.2010.05.005
    1. Akduman EI, Nacke RE, Leiva PM, Akduman L. Accuracy of ocular axial length measurement with MRI. Ophthalmologica. 2008;222(6):397-399. doi:10.1159/000153419
    1. den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MM. Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry. 2006;63(1):57-62. doi:10.1001/archpsyc.63.1.57
    1. Bernard C, Helmer C, Dilharreguy B, et al. . Time course of brain volume changes in the preclinical phase of Alzheimer’s disease. Alzheimers Dement. 2014;10(2):143-151.e1. doi:10.1016/j.jalz.2013.08.279
    1. Ito K, Sasaki M, Takahashi J, et al. . Detection of early changes in the parahippocampal and posterior cingulum bundles during mild cognitive impairment by using high-resolution multi-parametric diffusion tensor imaging. Psychiatry Res. 2015;231(3):346-352. doi:10.1016/j.pscychresns.2015.01.020
    1. Tabatabaei-Jafari H, Shaw ME, Cherbuin N. Cerebral atrophy in mild cognitive impairment: a systematic review with meta-analysis. Alzheimers Dement (Amst). 2015;1(4):487-504.
    1. Zhuang L, Sachdev PS, Trollor JN, et al. . Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI. Neurology. 2012;79(8):748-754. doi:10.1212/WNL.0b013e3182661f4d
    1. Helmer C, Malet F, Rougier MB, et al. . Is there a link between open-angle glaucoma and dementia? the Three-City–Alienor cohort. Ann Neurol. 2013;74(2):171-179.
    1. Bayer AU, Ferrari F, Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol. 2002;47(3):165-168. doi:10.1159/000047976
    1. Tamura H, Kawakami H, Kanamoto T, et al. . High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci. 2006;246(1-2):79-83. doi:10.1016/j.jns.2006.02.009
    1. Tsilis AG, Tsilidis KK, Pelidou SH, Kitsos G. Systematic review of the association between Alzheimer’s disease and chronic glaucoma. Clin Ophthalmol. 2014;8:2095-2104. doi:10.2147/OPTH.S69534
    1. Gordon-Lipkin E, Chodkowski B, Reich DS, et al. . Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69(16):1603-1609. doi:10.1212/
    1. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429-1436. doi:10.1006/nimg.2002.1267
    1. Gold BT, Powell DK, Andersen AH, Smith CD. Alterations in multiple measures of white matter integrity in normal women at high risk for Alzheimer’s disease. Neuroimage. 2010;52(4):1487-1494. doi:10.1016/j.neuroimage.2010.05.036
    1. Salat DH, Tuch DS, van der Kouwe AJ, et al. . White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging. 2010;31(2):244-256. doi:10.1016/j.neurobiolaging.2008.03.013
    1. Méndez-Gómez JL, Rougier MB, Tellouck L, et al. . Peripapillary retinal nerve fiber layer thickness and the evolution of cognitive performance in an elderly population. Front Neurol. 2017;8:93. doi:10.3389/fneur.2017.00093

Source: PubMed

3
Předplatit