Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2

Shiyu Yin, Ming Huang, Dengju Li, Ning Tang, Shiyu Yin, Ming Huang, Dengju Li, Ning Tang

Abstract

Severe coronavirus disease 2019 (COVID-19) is commonly complicated with coagulopathy, the difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2 has not been analyzed. Coagulation results and clinical features of consecutive patients with severe pneumonia induced by SARS-CoV2 (COVID group) and non-SARS-CoV2 (non-COVID group) in Tongji hospital were retrospectively analyzed and compared. Whether patients with elevated D-dimer could benefit from anticoagulant treatment was evaluated. There were 449 COVID patients and 104 non-COVID patients enrolled into the study. The 28-day mortality in COVID group was approximately twofold of mortality in non-COVID group (29.8% vs. 15.4%, P = 0.003), COVID group were older (65.1 ± 12.0 vs. 58.4 ± 18.0, years, P < 0.001) and with higher platelet count (215 ± 100 vs. 188 ± 98, ×109/L, P = 0.015), comparing to non-COVID group. The 28-day mortality of heparin users were lower than nonusers In COVID group with D-dimer > 3.0 μg/mL (32.8% vs. 52.4%, P = 0.017). Patients with severe pneumonia induced by SARS-CoV2 had higher platelet count than those induced by non-SARS-CoV2, and only the former with markedly elevated D-dimer may benefit from anticoagulant treatment.

Keywords: Coagulopathy; Coronavirus disease 2019; D-dimer; Severe pneumonia.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Paired bar chart showing the mortality between heparin users and nonusers in patients with severe pneumonia induced by SARS-CoV2 (a COVID group) and non-SARS-CoV2 (b non-COVID group) stratified by D-dimer level. D-D, D-dimer; ULN, upper limit of normal (0.5 μg/mL); *P < 0.05 between heparin users and nonusers

References

    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Tang N, Li D, Wang X, Sun Z (20220) Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost
    1. Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020;9(1):558–570. doi: 10.1080/22221751.2020.1736644.
    1. Schultz MJ, Haitsma JJ, Zhang H, Slutsky AS. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia—a review. Crit Care Med. 2006;34(3):871–877. doi: 10.1097/01.CCM.0000201882.23917.B8.
    1. National Health Commission of China . The diagnosis and treatment plan for the novel coronavirus disease. 7. Bejing: National Health Commission of China; 2020.
    1. Iba T, Nisio MD, Levy JH, Kitamura N, Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open. 2017;7(9):e017046. doi: 10.1136/bmjopen-2017-017046.
    1. Venclauskas L, Llau JV, Jenny JY, Kjaersgaard-Andersen P, Jans Ø, ESA VTE Guidelines Task Force European guidelines on perioperative venous thromboembolism prophylaxis: day surgery and fast-track surgery. Eur J Anaesthesiol. 2018;35(2):134–138. doi: 10.1097/EJA.0000000000000706.
    1. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44. doi: 10.1016/j.thromres.2016.11.007.
    1. Schmitt FCF, Manolov V, Morgenstern J, et al. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study. Ann Intensive Care. 2019;9(1):19. doi: 10.1186/s13613-019-0499-6.
    1. Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res. 2019;181:77–83. doi: 10.1016/j.thromres.2019.07.013.
    1. Menter DG, Kopetz S, Hawk E, et al. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Rev. 2017;36(2):199–213. doi: 10.1007/s10555-017-9682-0.
    1. Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: do heparins have direct anti-inflammatory effects? Thromb Haemost. 2017;117(3):437–444. doi: 10.1160/TH16-08-0620.
    1. Aikawa N, Shimazaki S, Yamamoto Y, et al. Thrombomodulin alfa in the treatment of infectious patients complicated by disseminated intravascular coagulation: subanalysis from the phase 3 trial. Shock. 2011;35(4):349–354. doi: 10.1097/SHK.0b013e318204c019.
    1. Liu XL, Wang XZ, Liu XX, et al. Low-dose heparin as treatment for early disseminated intravascular coagulation during sepsis: a prospective clinical study. Exp Ther Med. 2014;7(3):604–608. doi: 10.3892/etm.2013.1466.

Source: PubMed

3
Předplatit