Protocol paper: a multi-center, double-blinded, randomized, 6-month, placebo-controlled study followed by 12-month open label extension to evaluate the safety and efficacy of Saracatinib in Fibrodysplasia Ossificans Progressiva (STOPFOP)

Bernard J Smilde, Clemens Stockklausner, Richard Keen, Andrew Whittaker, Alex N Bullock, Annette von Delft, Natasja M van Schoor, Paul B Yu, E Marelise W Eekhoff, Bernard J Smilde, Clemens Stockklausner, Richard Keen, Andrew Whittaker, Alex N Bullock, Annette von Delft, Natasja M van Schoor, Paul B Yu, E Marelise W Eekhoff

Abstract

Background: Fibrodysplasia Ossificans Progressiva (FOP) is a genetic, progressive and devastating disease characterized by severe heterotopic ossification (HO), loss of mobility and early death. There are no FDA approved medications. The STOPFOP team identified AZD0530 (saracatinib) as a potent inhibitor of the ALK2/ACVR1-kinase which is the causative gene for this rare bone disease. AZD0530 was proven to prevent HO formation in FOP mouse models. The STOPFOP trial investigates the repositioning of AZD0530, originally developed for ovarian cancer treatment, to treat patients with FOP.

Methods: The STOPFOP trial is a phase 2a study. It is designed as a European, multicentre, 6-month double blind randomized controlled trial of AZD0530 versus placebo, followed by a 12-month trial comparing open-label extended AZD0530 treatment with natural history data as a control. Enrollment will include 20 FOP patients, aged 18-65 years, with the classic FOP mutation (ALK2 R206H). The primary endpoint is objective change in heterotopic bone volume measured by low-dose whole-body computer tomography (CT) in the RCT phase. Secondary endpoints include 18F NaF PET activity and patient reported outcome measures.

Discussion: Clinical trials in rare diseases with limited study populations pose unique challenges. An ideal solution for limiting risks in early clinical studies is drug repositioning - using existing clinical molecules for new disease indications. Using existing assets may also allow a more fluid transition into clinical practice. With positive study outcome, AZD0530 may provide a therapy for FOP that can be rapidly progressed due to the availability of existing safety data from 28 registered clinical trials with AZD0530 involving over 600 patients.

Trial registration: EudraCT, 2019-003324-20. Registered 16 October 2019, https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-003324-20/NL .

Clinicaltrials: gov , NCT04307953 . Registered 13 March 2020.

Keywords: AZD0530; Clinical trial; Drug repositioning; Drug repurposing; Fibrodysplasia Ossificans Progressiva; Saracatinib.

Conflict of interest statement

AW is a full-time employee of AstraZeneca UK Ltd. and may hold shares in the company. PBY is a cofounder of and holds stock in Keros Therapeutics, which develops therapies for hematologic and musculoskeletal diseases targeting bone morphogenetic protein and TGF-β signaling pathways, including fibrodysplasia ossificans progressiva. The interests of PBY are reviewed and managed by Brigham and Women’s Hospital in accordance with their conflict-of-interest policies. All other authors declare no conflicts of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study overview (A) and comparison groups (B). IFOPA = International Fibrodysplasia Ossificans. Association, PET = Positrion Emission Tomography, CT = Computer Tomography, ROM = Range Of Motion

References

    1. Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, Murphy D, Le Cam Y, Rath A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur J Hum Genet. 2020;28(2):165–173. doi: 10.1038/s41431-019-0508-0.
    1. Ferreira CR. The burden of rare diseases. Am J Med Genet A. 2019;179(6):885–892. doi: 10.1002/ajmg.a.61124.
    1. Griggs RC, Batshaw M, Dunkle M, Gopal-Srivastava R, Kaye E, Krischer J, Nguyen T, Paulus K, Merkel PA. Rare diseases clinical research N: Clinical research for rare disease: Opportunities, challenges, and solutions. Mol Genet Metab. 2009;96(1):20–26. doi: 10.1016/j.ymgme.2008.10.003.
    1. Baujat G, Choquet R, Bouée S, Jeanbat V, Courouve L, Ruel A, Michot C, Le Quan Sang K-H, Lapidus D, Messiaen C, et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in France: An estimate based on a record linkage of two national databases. Orphanet J Rare Dis. 2017;12(1):123. doi: 10.1186/s13023-017-0674-5.
    1. Pignolo RJ, Hsiao EC, Baujat G, Lapidus D, Sherman A, Kaplan FS. Prevalence of fibrodysplasia ossificans progressiva (FOP) in the United States: Estimate from three treatment centers and a patient organization. Orphanet J Rare Dis. 2021;16(1):350. doi: 10.1186/s13023-021-01983-2.
    1. Eekhoff EMW, Botman E, Coen Netelenbos J, de Graaf P, Bravenboer N, Micha D, Pals G, de Vries TJ, Schoenmaker T, Hoebink M, et al. [18F]NaF PET/CT scan as an early marker of heterotopic ossification in fibrodysplasia ossificans progressiva. Bone. 2018;109:143–146. doi: 10.1016/j.bone.2017.08.012.
    1. Pignolo RJ, Bedford-Gay C, Liljesthröm M, Durbin-Johnson BP, Shore EM, Rocke DM, Kaplan FS. The natural history of flare-ups in Fibrodysplasia Ossificans Progressiva (FOP): A comprehensive global assessment. J Bone Miner Res. 2016;31(3):650–656. doi: 10.1002/jbmr.2728.
    1. Kaplan FS, Zasloff MA, Kitterman JA, Shore EM, Hong CC, Rocke DM. Early mortality and cardiorespiratory failure in patients with fibrodysplasia ossificans progressiva. J Bone Joint Surg Am. 2010;92(3):686–691. doi: 10.2106/JBJS.I.00705.
    1. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, Delai P, Fastnacht-Urban E, Forman SJ, Gillessen-Kaesbach G, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379–390. doi: 10.1002/humu.20868.
    1. Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L, Wen X, Nannuru KC, Jimenez J, Xie L, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 2015;7(303):303ra137. doi: 10.1126/scitranslmed.aac4358.
    1. Song G-A, Kim H-J, Woo K-M, Baek J-H, Kim G-S, Choi J-Y, Ryoo H-M. Molecular consequences of the ACVR1(R206H) mutation of fibrodysplasia ossificans progressiva. J Biol Chem. 2010;285(29):22542–22553. doi: 10.1074/jbc.M109.094557.
    1. Braun MM, Farag-El-Massah S, Xu K, Coté TR. Emergence of orphan drugs in the United States: A quantitative assessment of the first 25 years. Nat Rev Drug Discov. 2010;9(7):519–522. doi: 10.1038/nrd3160.
    1. Scherman D, Fetro C. Drug repositioning for rare diseases: Knowledge-based success stories. Therapie. 2020;75(2):161–167. doi: 10.1016/j.therap.2020.02.007.
    1. Frail DE, Brady M, Escott KJ, Holt A, Sanganee HJ, Pangalos MN, Watkins C, Wegner CD. Pioneering government-sponsored drug repositioning collaborations: Progress and learning. Nat Rev Drug Discov. 2015;14(12):833–841. doi: 10.1038/nrd4707.
    1. Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015;36(7):422–439. doi: 10.1016/j.tips.2015.04.005.
    1. Xie Z, Yang X, Duan Y, Han J, Liao C. Small-molecule kinase inhibitors for the treatment of nononcologic diseases. J Med Chem. 2021;64(3):1283–1345. doi: 10.1021/acs.jmedchem.0c01511.
    1. Mohedas AH, Xing X, Armstrong KA, Bullock AN, Cuny GD, Yu PB. Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem Biol. 2013;8(6):1291–1302. doi: 10.1021/cb300655w.
    1. Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008;14(12):1363–1369. doi: 10.1038/nm.1888.
    1. Williams E, Bagarova J, Kerr G, Xia D-D, Place ES, Dey D, Shen Y, Bocobo GA, Mohedas AH, Huang X, et al. Saracatinib is an efficacious clinical candidate for fibrodysplasia ossificans progressiva. JCI Insight. 2021;6(8):e95042. doi: 10.1172/jci.insight.95042.
    1. Smilde BJ, Keen R, Stockklausner C, Liu D, Bullock A, von Delft A, van Schoor NM, Yu PB, Eekhoff EMW. STOPFOP: A European phase II clinical trial using saracatinib to treat FOP. Bone Reports. 2020;13:100614. doi: 10.1016/j.bonr.2020.100614.
    1. Kaplan F, Mukaddam M, Baujat G, Cali A, Cho T-J, Crowe C, Cunto C, Delai P, Diecidue R, Di Rocco M, et al. The medical management of fibrodysplasia ossificans progressiva: current treatment considerations. 2019. pp. 1–111.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hrobjartsson A, Schulz KF, Parulekar WR, et al. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Hsiao EC, Di Rocco M, Cali A, Zasloff M, Al Mukaddam M, Pignolo RJ, Grunwald Z, Netelenbos C, Keen R, Baujat G, et al. Special considerations for clinical trials in fibrodysplasia ossificans progressiva (FOP) Br J Clin Pharmacol. 2019;85(6):1199–1207. doi: 10.1111/bcp.13777.
    1. Pignolo RJ, Baujat G, Brown MA, De Cunto C, Di Rocco M, Hsiao EC, Keen R, Al Mukaddam M, Sang K-HLQ, Wilson A, et al. Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes. Orphanet J Rare Dis. 2019;14(1):98. doi: 10.1186/s13023-019-1068-7.
    1. Barnes SA, Lindborg SR, Seaman JW., Jr Multiple imputation techniques in small sample clinical trials. Stat Med. 2006;25(2):233–245. doi: 10.1002/sim.2231.
    1. Morales-Piga A, Bachiller-Corral J, Trujillo-Tiebas MJ, Villaverde-Hueso A, Gamir-Gamir ML, Alonso-Ferreira V, Vázquez-Díaz M, Posada de la Paz M, Ayuso-García C. Fibrodysplasia ossificans progressiva in Spain: epidemiological, clinical, and genetic aspects. Bone. 2012;51(4):748–755. doi: 10.1016/j.bone.2012.07.002.
    1. Kitterman JA, Kantanie S, Rocke DM, Kaplan FS. Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics. 2005;116(5):e654–e661. doi: 10.1542/peds.2005-0469.
    1. Gregson CL, Hollingworth P, Williams M, Petrie KA, Bullock AN, Brown MA, Tobias JH, Triffitt JT. A novel ACVR1 mutation in the glycine/serine-rich domain found in the most benign case of a fibrodysplasia ossificans progressiva variant reported to date. Bone. 2011;48(3):654–658. doi: 10.1016/j.bone.2010.10.164.

Source: PubMed

3
Předplatit