Thoracic radiotherapy plus Durvalumab in elderly and/or frail NSCLC stage III patients unfit for chemotherapy - employing optimized (hypofractionated) radiotherapy to foster durvalumab efficacy: study protocol of the TRADE-hypo trial

Farastuk Bozorgmehr, Inn Chung, Petros Christopoulos, Johannes Krisam, Marc A Schneider, Lena Brückner, Daniel Wilhelm Mueller, Michael Thomas, Stefan Rieken, Farastuk Bozorgmehr, Inn Chung, Petros Christopoulos, Johannes Krisam, Marc A Schneider, Lena Brückner, Daniel Wilhelm Mueller, Michael Thomas, Stefan Rieken

Abstract

Background: Non-small cell lung cancer is the most common cause of cancer death worldwide, highlighting the need for novel therapeutic concepts. In particular, there is still a lack of treatment strategies for the group of elderly and frail patients, who are frequently not capable of receiving standard therapy regimens. Despite comprising the majority of lung cancer patients, this group is underrepresented in clinical trials. This applies also to elderly and frail patients suffering from unresectable stage III NSCLC, who are unfit for chemotherapy, and, therefore, cannot receive the standard therapy comprising of radiochemotherapy and the recently approved subsequent durvalumab consolidation therapy. These patients often receive radiotherapy only, which raises the concern of undertreatment. The TRADE-hypo trial aims at optimizing treatment of this patient group by combining radiotherapy with concomitant durvalumab administration, thereby employing the immune-promoting effects of radiotherapy, and determining safety, feasibility, and efficacy of this treatment.

Methods/ design: In this prospective phase II clinical trial, durvalumab therapy will be combined with either conventionally fractionated (CON-group) or hypofractionated (HYPO-group) thoracic radiotherapy. A safety stop-and-go lead-in phase will assess safety of hypofractionated radiotherapy with respect to severe pneumonitis in small patient cohorts before opening full enrollment. Tumor tissue, blood and stool samples will be collected before and during the study period to investigate the immunological mechanisms responsible for checkpoint inhibitor efficacy and immune-promoting effects of radiotherapy.

Discussion: Preclinical data suggests that irradiation-induced immunogenicity can be further increased if applied in a hypofractionated setting, potentially boosting the expected synergistic effect with immune checkpoint inhibition in restoring the immune anti-tumor response. If proven safe and efficient, a hypofractionated radiation schedule can provide a considerably more practicable option for the patient. Taking into consideration the intend to develop a combination treatment strategy that can be made available to patients soon after proving to be efficient and the potentially elevated toxicity of a hypofractionated radiotherapy approach, this trial was designed as a two-trials-in-one design. An accompanying translational research program is planned striving to gain insights into the tumor-host biology and to identify suitable biomarkers to predict therapy response.

Trial registration: Clinicaltrials.gov , NCT04351256 . Registered 17 April 2020, Eudra-CT, 2019-002192-33 . Registered 24 October 2019.

Keywords: Anti-PD-L1 monoclonal antibody; Geriatric risk profile; Hypofractionated radiation; Immune checkpoint inhibition; NSCLC; Non-small cell lung cancer; Radioimmunotherapy.

Conflict of interest statement

The TRADE-hypo trial receives funding from AstraZeneca/ MedImmune. However, AstraZeneca/ MedImmune has not been involved in study design, data collection, management, data analysis and interpretation, or in the decision to submit this protocol for publication. All authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study design of the TRADE-hypo trial. Patients will be enrolled according to eligibility criteria and treated with either a hypofractionated TRT regimen (HYPO-group) or conventionally fractionated TRT (CON-group) in combination with durvalumab. For the HYPO-group, a safety stop-and-go phase with a 6 + 6 design precedes full enrollment. Whenever this arm is open for recruitment, patients will be allocated to this arm until the cohort is closed; whenever HYPO-arm is closed for Stop/ Go decision evaluation based on the toxicity assessment of this regimen 8 weeks after the end of TRT, patients are allocated to the CON-arm. When the study proceeds to expansion phase, patients will be allocated to treatment arms by randomization using “biased coin” algorithm. An efficacy interim analysis will be performed after 18 patients have been enrolled in each arm
Fig. 2
Fig. 2
Cohort design of the safety stop-and-go lead-in phase (HYPO-group). The safety lead-in phase follows a 6 + 6 design in order to carefully evaluate the toxicity of the treatment in the HYPO-group with respect of the occurrence of a grade 3/4 pneumonitis (“event”) within 8 weeks after the end of TRT. Two events in the first six patients, two events in the first 12, or two events in the first 18 patients will result in termination of the HYPO-group (“Stop”). If no event is observed within the first two safety cohorts, i.e. the first 12 patients, the HYPO-arm will be opened for full enrollment with close toxicity assessment with respect to pneumonitis grade 3/4, and terminated as soon as two events are reported within the subsequent six patients (“Go*”). Full enrollment in the HYPO-arm will only take place if the criteria for the non-toxicity scenario are met, i.e. ≤ 1 event in n = 18 patients (“Go”)

References

    1. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, Mok TS, Reck M, Van Schil PE, Hellmann MD, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv192–iv237.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
    1. Howlader NNAKM, et al. SEER Cancer statistics review, 1975–2010. Bethesda: National Cancer Institute; 2013.
    1. Miller ED, Fisher JL, Haglund KE, Grecula JC, Xu-Welliver M, Bertino EM, He K, Shields PG, Carbone DP, Williams TM, et al. Identifying patterns of care for elderly patients with non-surgically treated stage III non-small cell lung cancer: an analysis of the national cancer database. Radiat Oncol. 2018;13(1):196.
    1. Driessen EJM, Schulkes KJG, Dingemans AC, van Loon JGM, Hamaker ME, Aarts MJ, Janssen-Heijnen MLG. Patterns of treatment and survival among older patients with stage III non-small cell lung cancer. Lung Cancer. 2018;116:55–61.
    1. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10(7):718–726.
    1. Ko EC, Raben D, Formenti SC. The integration of radiotherapy with immunotherapy for the treatment of non-small cell lung Cancer. Clin Cancer Res. 2018;24(23):5792–5806.
    1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al. Durvalumab after Chemoradiotherapy in stage III non-small-cell lung Cancer. N Engl J Med. 2017;377(20):1919–1929.
    1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al. Overall survival with Durvalumab after Chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–2350.
    1. Stinchcombe TE, Zhang Y, Vokes EE, Schiller JH, Bradley JD, Kelly K, Curran WJ, Jr, Schild SE, Movsas B, Clamon G, et al. Pooled analysis of individual patient data on concurrent Chemoradiotherapy for stage III non-small-cell lung Cancer in elderly patients compared with younger patients who participated in US National Cancer Institute cooperative group studies. J Clin Oncol. 2017;35(25):2885–2892.
    1. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306–1310.
    1. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–5388.
    1. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–7523.
    1. Marconi R, Strolin S, Bossi G, Strigari L. A meta-analysis of the abscopal effect in preclinical models: is the biologically effective dose a relevant physical trigger? PLoS One. 2017;12(2):e0171559.
    1. Smith R. Sequential treatment allocation using biased coin designs. J R Stat Soc Ser B Methodol. 1984;46(3):519–543.
    1. Frane J. A method of biased coin randomization, its implementation, and its validation. Drug Information J. 1998;32(2):423–432.
    1. Kenis C, Decoster L, Van Puyvelde K, De Greve J, Conings G, Milisen K, Flamaing J, Lobelle JP, Wildiers H. Performance of two geriatric screening tools in older patients with cancer. J Clin Oncol. 2014;32(1):19–26.
    1. Atagi S, Kawahara M, Yokoyama A, Okamoto H, Yamamoto N, Ohe Y, Sawa T, Ishikura S, Shibata T, Fukuda H, et al. Thoracic radiotherapy with or without daily low-dose carboplatin in elderly patients with non-small-cell lung cancer: a randomised, controlled, phase 3 trial by the Japan clinical oncology group (JCOG0301) Lancet Oncol. 2012;13(7):671–678.
    1. Ou SH, Ziogas A, Zell JA. Asian ethnicity is a favorable prognostic factor for overall survival in non-small cell lung cancer (NSCLC) and is independent of smoking status. J Thorac Oncol. 2009;4(9):1083–1093.
    1. Zhou W, Christiani DC. East meets west: ethnic differences in epidemiology and clinical behaviors of lung cancer between east Asians and Caucasians. Chin J Cancer. 2011;30(5):287–292.
    1. Kieser MWM, Englert S, Kunz CU, Rauch G. OneArmPhaseTwoStudy: an R package for planning, conducting, and analysing single-arm phase II studies. J Stat Soft. 2017;81:1–28.
    1. Englert S, Kieser M. Methods for proper handling of overrunning and underrunning in phase II designs for oncology trials. Stat Med. 2015;34(13):2128–2137.
    1. Kunzmann K, Kieser M. Point estimation and p-values in phase II adaptive two-stage designs with a binary endpoint. Stat Med. 2017;36(6):971–984.
    1. Kunzmann K, Kieser M. Test-compatible confidence intervals for adaptive two-stage single-arm designs with binary endpoint. Biom J. 2018;60(1):196–206.
    1. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.
    1. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–12297.
    1. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. N Engl J Med. 2016;375(19):1823–1833.
    1. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung Cancer. N Engl J Med. 2018;378(22):2078–2092.
    1. Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, Garon EB, Lee P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18(7):895–903.
    1. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–5468.
    1. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015;16(7):795–803.
    1. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 2018;18(5):313–322.
    1. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–712.
    1. Peters S, Felip E, Dafni U, Belka C, Guckenberger M, Irigoyen A, Nadal E, Becker A, Vees H, Pless M, et al. Safety evaluation of nivolumab added concurrently to radiotherapy in a standard first line chemo-radiotherapy regimen in stage III non-small cell lung cancer-the ETOP NICOLAS trial. Lung Cancer. 2019;133:83–87.
    1. Lin SH, Lin Y, Yao L, Kalhor N, Carter BW, Altan M, Blumenschein G, Byers LA, Fossella F, Gibbons DL, et al. Phase II trial of concurrent Atezolizumab with Chemoradiation for Unresectable NSCLC. J Thorac Oncol. 2020;15(2):248–257.
    1. Belluomini L, Fiorica F, Frassoldati A. Immune checkpoint inhibitors and radiotherapy in NSCLC patients: not just a fluke. Oncol Ther. 2019;7(1):83–91.
    1. Levy A, Massard C, Soria JC, Deutsch E. Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: single Centre subset analysis from a phase 1/2 trial. Eur J Cancer. 2016;68:156–162.
    1. Bahig H, Aubin F, Stagg J, Gologan O, Ballivy O, Bissada E, Nguyen-Tan FP, Soulieres D, Guertin L, Filion E, et al. Phase I/II trial of Durvalumab plus Tremelimumab and stereotactic body radiotherapy for metastatic head and neck carcinoma. BMC Cancer. 2019;19(1):68.
    1. Maguire J, Khan I, McMenemin R, O'Rourke N, McNee S, Kelly V, Peedell C, Snee M. SOCCAR: a randomised phase II trial comparing sequential versus concurrent chemotherapy and radical hypofractionated radiotherapy in patients with inoperable stage III non-small cell lung Cancer and good performance status. Eur J Cancer. 2014;50(17):2939–2949.
    1. Iqbal MS, Vashisht G, Mulvenna P, McDonald F, Turnbull H, Atherton P, Bradshaw A, Simmons T, Kovarik J, Singhal S, et al. Hypofractionated concurrent chemoradiation in non-small cell lung cancer (NSCLC): efficacy and toxicity of the SOCCAR trial regime in real world practice. Lung Cancer. 2018;115:S64.
    1. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.

Source: PubMed

3
Předplatit