Neural correlates of abnormal sensory discrimination in laryngeal dystonia

Pichet Termsarasab, Ritesh A Ramdhani, Giovanni Battistella, Estee Rubien-Thomas, Melissa Choy, Ian M Farwell, Miodrag Velickovic, Andrew Blitzer, Steven J Frucht, Richard B Reilly, Michael Hutchinson, Laurie J Ozelius, Kristina Simonyan, Pichet Termsarasab, Ritesh A Ramdhani, Giovanni Battistella, Estee Rubien-Thomas, Melissa Choy, Ian M Farwell, Miodrag Velickovic, Andrew Blitzer, Steven J Frucht, Richard B Reilly, Michael Hutchinson, Laurie J Ozelius, Kristina Simonyan

Abstract

Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

Keywords: Brain imaging; Endophenotype; Sensory processing.

Figures

Fig. 1
Fig. 1
(A, C) Visual temporal discrimination threshold (TDT) Z-scores and (B, D) tactile spatial discrimination threshold (SDT) Z-scores in healthy controls and patients with LD. Z-scores equal or greater than 2.0 were considered abnormal (indicated by a horizontal dotted line). The number of subjects with abnormal TDT Z-scores/the total number of subjects per each group is demonstrated at the top of each distribution plot. For the range of values, see Table 2.
Fig. 2
Fig. 2
Associations of abnormal TDT values with gray matter volume (A, B) and functional brain activation during speech production (C) across all LD patients. Z-scores equal or greater than 2.0 were considered abnormal. The color bar indicates the r values.
Fig. 3
Fig. 3
Significant correlations of abnormal TDT with brain function and structure in LD patients. Top panel: In patients with sporadic and familial LD, abnormal TDT showed significant relationships with gray matter volume (A), resting-state brain activity (B), and brain activity during symptomatic speech production (C, D). Panel (C) shows regions of spatial overlap of these correlations between the two patient groups; Panel (D) shows additional regions of distinct correlations in each group. Bottom panel: In patients with ADLD and ABLD, abnormal TDT showed significant relationships with gray matter volume (E), resting-state brain activity (F, G), and brain activity during symptomatic speech production (H, I). Panels (F, H) show regions of spatial overlap of the corresponding correlations between the two patient groups. Panels (G, I) show additional regions of corresponding distinct correlations in each group. The color bars represent distinct correlations in sporadic (S), familial (F), ADLD (AD) and ABLD (AB) patients as well as common correlations between sporadic and familial patients (S × D) and between ADLD and ABLD patients (AD × AB). For the direction of correlations (positive and negative), see Table 3, Table 4.

References

    1. Aglioti S.M., Fiorio M., Forster B., Tinazzi M. Temporal discrimination of cross-modal and unimodal stimuli in generalized dystonia. Neurology. 2003;60:782–785.
    1. Akkal D., Dum R.P., Strick P.L. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J. Neurosci. 2007;27:10659–10673.
    1. Ali S.O., Thomassen M., Schulz G.M., Hosey L.A., Varga M., Ludlow C.L., Braun A.R. Alterations in CNS activity induced by botulinum toxin treatment in spasmodic dysphonia: an H215O PET study. J. Speech Lang. Hear. Res. 2006;49:1127–1146.
    1. Alvarez J.A., Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol. Rev. 2006;16:17–42.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.
    1. Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26:839–851.
    1. Belluscio B.A., Jin L., Watters V., Lee T.H., Hallett M. Sensory sensitivity to external stimuli in Tourette syndrome patients. Mov. Disord. 2011;26:2538–2543.
    1. Berman B.D., Hallett M., Herscovitch P., Simonyan K. Striatal dopaminergic dysfunction at rest and during task performance in writer's cramp. Brain. 2013;136:3645–3658.
    1. Black K.J., Ongur D., Perlmutter J.S. Putamen volume in idiopathic focal dystonia. Neurology. 1998;51:819–824.
    1. Bourguignon N.J. A rostro-caudal axis for language in the frontal lobe: the role of executive control in speech production. Neurosci. Biobehav. Rev. 2014;47:431–444.
    1. Bradley D., Whelan R., Kimmich O., O'Riordan S., Mulrooney N., Brady P., Walsh R., Reilly R.B., Hutchinson S., Molloy F., Hutchinson M. Temporal discrimination thresholds in adult-onset primary torsion dystonia: an analysis by task type and by dystonia phenotype. J. Neurol. 2012;259:77–82.
    1. Bradley D., Whelan R., Walsh R., Reilly R.B., Hutchinson S., Molloy F., Hutchinson M. Temporal discrimination threshold: VBM evidence for an endophenotype in adult onset primary torsion dystonia. Brain. 2009;132:2327–2335.
    1. Carbon M., Eidelberg D. Abnormal structure–function relationships in hereditary dystonia. Neuroscience. 2009;164:220–229.
    1. Carbon M., Kingsley P.B., Tang C., Bressman S., Eidelberg D. Microstructural white matter changes in primary torsion dystonia. Mov. Disord. 2008;23:234–239.
    1. Chan J., Brin M.F., Fahn S. Idiopathic cervical dystonia: clinical characteristics. Mov. Disord. 1991;6:119–126.
    1. Chen C.H., Fremont R., Arteaga-Bracho E.E., Khodakhah K. Short latency cerebellar modulation of the basal ganglia. Nat. Neurosci. 2014;17:1767–1775.
    1. Clower D.M., West R.A., Lynch J.C., Strick P.L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 2001;21:6283–6291.
    1. Coffman K.A., Dum R.P., Strick P.L. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 2011;108:16068–16073.
    1. Cuadra M.B., Cammoun L., Butz T., Cuisenaire O., Thiran J.P. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans. Med. Imaging. 2005;24:1548–1565.
    1. Doyon J., Laforce R., Jr., Bouchard G., Gaudreau D., Roy J., Poirier M., Bedard P.J., Bedard F., Bouchard J.P. Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia. 1998;36:625–641.
    1. Draganski B., Thun-Hohenstein C., Bogdahn U., Winkler J., May A. “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology. 2003;61:1228–1231.
    1. Etgen T., Muhlau M., Gaser C., Sander D. Bilateral grey-matter increase in the putamen in primary blepharospasm. J. Neurol. Neurosurg. Psychiatry. 2006;77:1017–1020.
    1. Fiorio M., Gambarin M., Valente E.M., Liberini P., Loi M., Cossu G., Moretto G., Bhatia K.P., Defazio G., Aglioti S.M., Fiaschi A., Tinazzi M. Defective temporal processing of sensory stimuli in DYT1 mutation carriers: a new endophenotype of dystonia? Brain. 2007;130:134–142.
    1. Fiorio M., Tinazzi M., Bertolasi L., Aglioti S.M. Temporal processing of visuotactile and tactile stimuli in writer's cramp. Ann. Neurol. 2003;53:630–635.
    1. Fiorio M., Tinazzi M., Scontrini A., Stanzani C., Gambarin M., Fiaschi A., Moretto G., Fabbrini G., Berardelli A. Tactile temporal discrimination in patients with blepharospasm. J. Neurol. Neurosurg. Psychiatry. 2008;79:796–798.
    1. Friedman A., Fahn S. Spontaneous remissions in spasmodic torticollis. Neurology. 1986;36:398–400.
    1. Grandas F., Elston J., Quinn N., Marsden C.D. Blepharospasm: a review of 264 patients. J. Neurol. Neurosurg. Psychiatry. 1988;51:767–772.
    1. Granert O., Peller M., Jabusch H.C., Altenmuller E., Siebner H.R. Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J. Neurol. Neurosurg. Psychiatry. 2011;82:1225–1231.
    1. Haslinger B., Erhard P., Dresel C., Castrop F., Roettinger M., Ceballos-Baumann A.O. “Silent event-related” fMRI reveals reduced sensorimotor activation in laryngeal dystonia. Neurology. 2005;65:1562–1569.
    1. Hutchinson M., Kimmich O., Molloy A., Whelan R., Molloy F., Lynch T., Healy D.G., Walsh C., Edwards M.J., Ozelius L., Reilly R.B., O'Riordan S. The endophenotype and the phenotype: temporal discrimination and adult-onset dystonia. Mov. Disord. 2013;28:1766–1774.
    1. Kimmich O., Bradley D., Whelan R., Mulrooney N., Reilly R.B., Hutchinson S., O'Riordan S., Hutchinson M. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test. Brain. 2011;134:2656–2663.
    1. Kimmich O., Molloy A., Whelan R., Williams L., Bradley D., Balsters J., Molloy F., Lynch T., Healy D.G., Walsh C., O'Riordan S., Reilly R.B., Hutchinson M. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates. Mov. Disord. 2014;29:804–811.
    1. Kirke D.N., Frucht S.J., Simonyan K. Alcohol responsiveness in laryngeal dystonia: a survey study. J. Neurol. 2015;262(6):1548–1556.
    1. Ludlow C.L., Adler C.H., Berke G.S., Bielamowicz S.A., Blitzer A., Bressman S.B., Hallett M., Jinnah H.A., Juergens U., Martin S.B., Perlmutter J.S., Sapienza C., Singleton A., Tanner C.M., Woodson G.E. Research priorities in spasmodic dysphonia. Otolaryngol. Head Neck Surg. 2008;139:495–505.
    1. Maniak S., Sieberer M., Hagenah J., Klein C., Vieregge P. Focal and segmental primary dystonia in north-western Germany—a clinico-genetic study. Acta Neurol. Scand. 2003;107:228–232.
    1. Meyer-Lindenberg A. Intermediate or brainless phenotypes for psychiatric research? Psychol. Med. 2010;40:1057–1062.
    1. Molinari M., Filippini V., Leggio M.G. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–870.
    1. Molloy F.M., Carr T.D., Zeuner K.E., Dambrosia J.M., Hallett M. Abnormalities of spatial discrimination in focal and generalized dystonia. Brain. 2003;126:2175–2182.
    1. Neychev V.K., Gross R.E., Lehericy S., Hess E.J., Jinnah H.A. The functional neuroanatomy of dystonia. Neurobiol. Dis. 2011;42:185–201.
    1. Perrachione T.K., Ghosh S.S. Optimized design and analysis of sparse-sampling FMRI experiments. Front. Neurosci. 2013;7:55.
    1. Prudente C.N., Hess E.J., Jinnah H.A. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35.
    1. Ramdhani R.A., Simonyan K. Primary dystonia: conceptualizing the disorder through a structural brain imaging lens. Tremor Other Hyperkinet Mov (N Y) 2013;3
    1. Sadnicka A., Teo J.T., Kojovic M., Parees I., Saifee T.A., Kassavetis P., Schwingenschuh P., Katschnig-Winter P., Stamelou M., Mencacci N.E., Rothwell J.C., Edwards M.J., Bhatia K.P. All in the blink of an eye: new insight into cerebellar and brainstem function in DYT1 and DYT6 dystonia. Eur. J. Neurol. 2015;22(5):762–767.
    1. Schweinfurth J.M., Billante M., Courey M. Risk factors and demographics in patients with spasmodic dysphonia. Laryngoscope. 2002;112:220–223.
    1. Sheehy M.P., Rothwell J.C., Marsden C.D. Writer's cramp. Adv. Neurol. 1988;50:457–472.
    1. Simonyan K., Berman B.D., Herscovitch P., Hallett M. Abnormal striatal dopaminergic neurotransmission during rest and task production in spasmodic dysphonia. J. Neurosci. 2013;33:14705–14714.
    1. Simonyan K., Herscovitch P., Horwitz B. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: a combined PET, fMRI and DTI study. Neuroimage. 2013;70:21–32.
    1. Simonyan K., Jurgens U. Cortico-cortical projections of the motorcortical larynx area in the rhesus monkey. Brain Res. 2002;949:23–31.
    1. Simonyan K., Jurgens U. Afferent cortical connections of the motor cortical larynx area in the rhesus monkey. Neuroscience. 2005;130:133–149.
    1. Simonyan K., Ludlow C.L. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study. Cereb. Cortex. 2010;20:2749–2759.
    1. Simonyan K., Ludlow C.L. Abnormal structure–function relationship in spasmodic dysphonia. Cereb. Cortex. 2012;22:417–425.
    1. Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., Filippini N., Watkins K.E., Toro R., Laird A.R., Beckmann C.F. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U. S. A. 2009;106:13040–13045.
    1. Tanner K., Roy N., Merrill R.M., Kimber K., Sauder C., Houtz D.R., Doman D., Smith M.E. Risk and protective factors for spasmodic dysphonia: a case-control investigation. J. Voice. 2011;25:e35–e46.
    1. Ulug A.M., Vo A., Argyelan M., Tanabe L., Schiffer W.K., Dewey S., Dauer W.T., Eidelberg D. Cerebellothalamocortical pathway abnormalities in torsin A DYT1 knock-in mice. Proc. Natl. Acad. Sci. U.S.A. 2011;108:6638–6643.
    1. Zoons E., Booij J., Nederveen A.J., Dijk J.M., Tijssen M.A. Structural, functional and molecular imaging of the brain in primary focal dystonia—a review. Neuroimage. 2011;56:1011–1020.

Source: PubMed

3
Předplatit