Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review

Sandrine Ding, Michael Schumacher, Sandrine Ding, Michael Schumacher

Abstract

Diabetic individuals need to tightly control their blood glucose concentration. Several methods have been developed for this purpose, such as the finger-prick or continuous glucose monitoring systems (CGMs). However, these methods present the disadvantage of being invasive. Moreover, CGMs have limited accuracy, notably to detect hypoglycemia. It is also known that physical exercise, and even daily activity, disrupt glucose dynamics and can generate problems with blood glucose regulation during and after exercise. In order to deal with these challenges, devices for monitoring patients' physical activity are currently under development. This review focuses on non-invasive sensors using physiological parameters related to physical exercise that were used to improve glucose monitoring in type 1 diabetes (T1DM) patients. These devices are promising for diabetes management. Indeed they permit to estimate glucose concentration either based solely on physical activity parameters or in conjunction with CGM or non-invasive CGM (NI-CGM) systems. In these last cases, the vital signals are used to modulate glucose estimations provided by the CGM and NI-CGM devices. Finally, this review indicates possible limitations of these new biosensors and outlines directions for future technologic developments.

Keywords: ECG; T1DM; accelerometer; algorithm; blood glucose monitoring; diabetes; exercise; physiological parameters; sensor; vital signs.

References

    1. Afsar B. Disruption of circadian blood pressure, heart rate and the impact on glycemic control in type 1 diabetes. Diabetes Metab. Syndr. 2015;9:359–363. doi: 10.1016/j.dsx.2014.05.002.
    1. Frier B.M. Hypoglycaemia in diabetes mellitus: Epidemiology and clinical implications. Nat. Rev. Endocrinol. 2014;10:711–722. doi: 10.1038/nrendo.2014.170.
    1. Burge M.R., Mitchell S., Sawyer A., Schade D.S. Continuous glucose monitoring: the future of diabetes management. Diabetes Spectr. 2008;21:112–119. doi: 10.2337/diaspect.21.2.112.
    1. Wagner J., Malchoff C., Abbott G. Invasiveness as a barrier to self-monitoring of blood glucose in diabetes. Diabetes Technol. Ther. 2005;7:612–619. doi: 10.1089/dia.2005.7.612.
    1. Ghafar-Zadeh E. Wireless integrated biosensors for point-of-care diagnostic applications. Sensors. 2015;15:3236–3261. doi: 10.3390/s150203236.
    1. Pickup J.C., Freeman S.C., Sutton A.J. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self-monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ. 2011;343:1–14. doi: 10.1136/bmj.d3805.
    1. Choudhary P., Ramasamy S., Green L., Gallen G., Pender S., Brackenridge A., Amiel S.A., Pickup J.C. Real-time continuous glucose monitoring significantly reduces severe hypoglycemia in hypoglycemia-unaware patients with type 1 diabetes. Diabetes Care. 2013;36:4160–4162. doi: 10.2337/dc13-0939.
    1. Mauras N., Fox L., Englert K., Beck R.W. Continuous glucose monitoring in type 1 diabetes. Endocrine. 2013;43:41–50. doi: 10.1007/s12020-012-9765-1.
    1. Langendam M., Luijf Y.M., Hooft L., Devries J.H., Mudde A.H., Scholten R.J. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 2012;1 doi: 10.1002/14651858.CD008101.pub2.
    1. Damiano E.R., McKeon K., El-Khatib F.H., Zheng H., Nathan D.M., Russell S.J. A comparative effectiveness analysis of three continuous glucose monitors: the navigator, G4 platinum, and Enlite. J. Diabetes Sci. Technol. 2014;8:699–708. doi: 10.1177/1932296814532203.
    1. Peyser T., Dassau E., Breton M., Skyler J.S. The artificial pancreas: current status and future prospects in the management of diabetes. Ann. N. Y. Acad. Sci. 2014;1311:102–123. doi: 10.1111/nyas.12431.
    1. Kovatchev B., Anderson S., Heinemann L., Clarke W. Comparison of the numerical and clinical accuracy of four continuous glucose monitors. Diabetes Care. 2008;31:1160–1164. doi: 10.2337/dc07-2401.
    1. Aloraefy M., Pfefer T.J., Ramella-Roman J.C., Sapsford K.E. In vitro evaluation of fluorescence glucose biosensor response. Sensors. 2014;14:12127–12148. doi: 10.3390/s140712127.
    1. Larin K.V., Eledrisi M.S., Motamedi M., Esenaliev R.O. Noninvasive blood glucose monitoring with optical coherence tomography: A pilot study in human subjects. Diabetes Care. 2002;25:2263–2267. doi: 10.2337/diacare.25.12.2263.
    1. Tura A., Maran A., Pacini G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 2007;77:16–40. doi: 10.1016/j.diabres.2006.10.027.
    1. Nunnold T., Colberg S.R., Herriott M.T., Somma C.T. Use of the noninvasive Glucowatch Biographer during exercise of varying intensity. Diabetes Technol. Ther. 2004;6:454–462. doi: 10.1089/1520915041705848.
    1. Yilmaz T., Foster R., Hao Y. Detecting vital signs with wearable wireless sensors. Sensors. 2010;10:10837–10862. doi: 10.3390/s101210837.
    1. Ciudin A., Hernández C., Simó R. Non-invasive methods of glucose measurement: Current status and future perspectives. Curr. Diabetes Rev. 2012;8:48–54. doi: 10.2174/157339912798829197.
    1. So C.-F., Choi K.-S., Wong T.K.S., Chung J.W.Y. Recent advances in noninvasive glucose monitoring. Med. Devices. 2012;5:45–52.
    1. Chowdhury K., Srivastava A., Sharma N., Sharma S. Prospective Analysis of Developing Noninvasive Blood Glucose Monitoring Biosensors for Diabetic Population. Biosci. Biotechnol. Res. Asia. 2014;11:1639–1647. doi: 10.13005/bbra/1563.
    1. Harman-Boehm I., Gal A., Raykhman A.M., Zahn J.D., Naidis E., Mayzel Y. Noninvasive glucose monitoring: a novel approach. J. Diabetes Sci. Technol. 2009;3:253–260. doi: 10.1177/193229680900300205.
    1. Harman-Boehm I., Gal A., Raykhman A.M., Naidis E., Mayzel Y. Noninvasive glucose monitoring: Increasing accuracy by combination of multi-technology and multi-sensors. J. Diabetes Sci. Technol. 2010;4:583–595. doi: 10.1177/193229681000400312.
    1. Caduff A., Mueller M., Megej A., Dewarrat F., Suri R.E., Klisic J., Donath M., Zakharov P., Schaub D., Stahel W.A., et al. Characteristics of a multisensory system for non-invasive glucose monitoring with external validation and prospective evaluation. Biosens. Bioelectron. 2011;26:3794–3800. doi: 10.1016/j.bios.2011.02.034.
    1. Manohar C., Levine J.A., Nandy D.K., Saad A., Dalla Man C., McCrady-Spitzer S.K., Basu R., Cobelli C., Carter R.E., Basu A., Kudva Y.C. The effect of walking on postprandial glycemic excursion in patients with type 1 diabetes and healthy people. Diabetes Care. 2012;35:2493–2499. doi: 10.2337/dc11-2381.
    1. MacDonald M.J. Postexercise late-onset hypoglycemia in insulin dependent diabetic patients. Diabetes Care. 1987;10:584–588. doi: 10.2337/diacare.10.5.584.
    1. Diabetes Research in Children Network (DirecNet) Study Group Prevention of hypoglycemia during exercise in children with type 1 diabetes by suspending basal insulin. Diabetes Care. 2006;29:2200–2204.
    1. Guelfi K.J., Ratnam N., Smythe G.A., Jones T.W., Fournier P.A. Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes. Am. J. Physiol. Endocrinol. MeTable. 2007;292:E865–E870. doi: 10.1152/ajpendo.00533.2006.
    1. American Diabetes Association Physical activity/exercise and diabetes. Diabetes Care. 2004;27:S58–S62.
    1. Valletta J.J., Chipperfield A.J., Clough G.F., Byrne C.D. Daily energy expenditure, cardiorespiratory fitness and glycaemic control in people with type 1 diabetes. PLoS ONE. 2014;9:589. doi: 10.1371/journal.pone.0097534.
    1. Dasanayake I.S., Bevier W.C., Castorino K., Pinsker J.E., Seborg D.E., Doyle F.J., Dassau E. Early detection of physical activity for people with type 1 diabetes mellitus. J. Diabetes Sci. Technol. 2015;9:1236–1245. doi: 10.1177/1932296815592409.
    1. Jacobs P.G., Resalat N., El Youssef J., Reddy R., Branigan D., Preiser N., Condon J., Castle J. Incorporating an exercise detection, grading, and hormone dosing algorithm into the artificial pancreas using accelerometry and heart rate. J. Diabetes Sci. Technol. 2015;9:1175–1184. doi: 10.1177/1932296815609371.
    1. Lipponen J.A., Kemppainen J., Karjalainen P.A., Laitinen T., Mikola H., Käri T., Tarvainen M.P. Dynamic estimation of cardiac repolarization characteristics during hypoglycemia in healthy and diabetic subjects. Physiol. Meas. 2011;32:649–660. doi: 10.1088/0967-3334/32/6/003.
    1. Lipponen J.A., Kemppainen J., Karjalainen P.A., Laitinen T., Mikola H., Käri T., Tarvainen M.P. Hypoglycemia detection based on cardiac repolarization features; Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August–3 September 2011; pp. 4697–4700.
    1. Nguyen L.L., Su S., Nguyen H.T. Identification of hypoglycemia and hyperglycemia in Type 1 diabetic patients using ECG parameters; Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Diego, CA, USA. 28 Auguest–1 September 2012; pp. 2716–2719.
    1. Nguyen L.L., Su S., Nguyen H.T. Effects of hyperglycemia on variability of RR, QT and corrected QT intervals in Type 1 diabetic patients; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 1819–1822.
    1. Christensen T.F., Lewinsky I., Kristensen L.E., Randløv J., Poulsen J.U., Eldrup E., Pater C., Hejlesen O.K., Struijk J.J. QT interval prolongation during spontaneous episodes of hypoglycaemia in type 1 diabetes: The impact of heart rate correction. Diabetologia. 2010;53:2036–2041. doi: 10.1007/s00125-010-1802-0.
    1. Christensen T.F., Cichosz S.L., Tarnow L., Randløv J., Kristensen L.E., Struijk J.J., Eldrup E., Hejlesen O.K. Hypoglycaemia and QT interval prolongation in type 1 diabetes—bridging the gap between clamp studies and spontaneous episodes. J. Diabetes Complicat. 2014;28:723–728. doi: 10.1016/j.jdiacomp.2014.03.007.
    1. Nuryani N., Ling S.S.H., Nguyen H.T. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection. Ann. Biomed. Eng. 2012;40:934–945. doi: 10.1007/s10439-011-0446-7.
    1. Nguyen L.L., Su S., Nguyen H.T. Neural network approach for non-invasive detection of hyperglycemia using electrocardiographic signals; Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. 26–30 August 2014; pp. 4475–4478.
    1. Zecchin C., Facchinetti A., Sparacino G., Dalla Man C., Manohar C., Levine J.A., Basu A., Kudva Y.C., Cobelli C. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring. Diabetes Technol. Ther. 2013;15:836–44. doi: 10.1089/dia.2013.0105.
    1. Sobel S.I., Chomentowski P.J., Vyas N., Andre D., Toledo F.G. Accuracy of a novel noninvasive multisensor technology to estimate glucose in diabetic subjects during dynamic conditions. J. Diabetes Sci. Technol. 2014;8:54–63. doi: 10.1177/1932296813516182.
    1. Stenerson M., Cameron F., Wilson D.M., Harris B., Payne S., Bequette W., Buckingham B.A. The impact of accelerometer and heart rate data on hypoglycemia mitigation in type 1 diabetes. J. Diabetes Sci. Technol. 2014;8:64–69. doi: 10.1177/1932296813516208.
    1. Stenerson M., Cameron F., Payne S.R., Payne S.L., Ly T.T., Wilson D.M., Buckingham B.A. The impact of accelerometer use in exercise-associated hypoglycemia prevention in type 1 diabetes. J. Diabetes Sci. Technol. 2015;9:80–85. doi: 10.1177/1932296814551045.
    1. Breton M.D., Brown S.A., Karvetski C.H., Kollar L., Topchyan K.A., Anderson S.M., Kovatchev B.P. Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol. Ther. 2014;16:506–511. doi: 10.1089/dia.2013.0333.
    1. Cichosz S.L., Frystyk J., Hejlesen O.K., Tarnow L., Fleischer J. A novel algorithm for prediction and detection of hypoglycemia based on continuous glucose monitoring and heart rate variability in patients with type 1 diabetes. J. Diabetes Sci. Technol. 2014;8:731–737. doi: 10.1177/1932296814528838.
    1. Cichosz S.L., Frystyk J., Tarnow L., Fleischer J. Combining information of autonomic modulation and CGM measurements enables prediction and improves detection of spontaneous hypoglycemic events. J. Diabetes Sci. Technol. 2015;9:132–137. doi: 10.1177/1932296814549830.
    1. Turksoy K., Quinn L.T., Littlejohn E., Cinar A. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement. Diabetes Technol. Ther. 2013;15:386–400. doi: 10.1089/dia.2012.0283.
    1. Turksoy K., Quinn L.T., Littlejohn E., Cinar A. An integrated multivariable artificial pancreas control system. J. Diabetes Sci. Technol. 2014;8:498–507. doi: 10.1177/1932296814524862.
    1. Zanon M., Sparacino G., Facchinetti A., Riz M., Talary M.S., Suri R.E., Caduff A., Cobelli C. Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the multisensor system. Med. Biol. Eng. Comput. 2012;50:1047–1057. doi: 10.1007/s11517-012-0932-6.
    1. Zanon M., Sparacino G., Facchinetti A., Talary M.S., Caduff A., Cobelli C. Regularised model identification improves accuracy of multisensor systems for noninvasive continuous glucose monitoring in diabetes management. J. Appl. Math. 2013;2013:1–10. doi: 10.1155/2013/793869.
    1. Zanon M., Sparacino G., Facchinetti A., Talary M.S., Mueller M., Caduff A., Cobelli C. Non-invasive continuous glucose monitoring with multi-sensor systems: A Monte Carlo-based methodology for assessing calibration robustness. Sensors. 2013;13:7279–7295. doi: 10.3390/s130607279.
    1. Hernandez-Silveira M., Ahmed K., Ang S.-S., Zandari F., Mehta T., Weir R., Burdett A., Toumazou C., Brett S.J. Assessment of the feasibility of an ultralow power, wireless digital patch for the continuous ambulatory monitoring of vital signs. BMJ Open. 2015;5 doi: 10.1136/bmjopen-2014-006606.
    1. Rollins D.K., Bhandari N., Kleinedler J., Kotz K., Strohbehn A., Boland L., Murphy M., Andre D., Vyas N., Welk G., et al. Free-living inferential modeling of blood-glucose level using only noninvasive inputs. J. Process. Control. 2010;20:95–107. doi: 10.1016/j.jprocont.2009.09.008.
    1. Vernillo G., Savoldelli A., Pellegrini B., Schena F. Validity of the SenseWear armband to assess energy expenditure in graded walking. JPAH. 2015;12:178–183. doi: 10.1123/jpah.2013-0437.
    1. Machač S., Procházka M., Radvanský J., Slabý K. Validation of physical activity monitors in individuals with diabetes: energy expenditure estimation by the Multisensor SenseWear Armband Pro3 and the Step Counter Omron HJ-720 against indirect calorimetry during walking. Diabetes Technol. Ther. 2013;15:413–418. doi: 10.1089/dia.2012.0235.
    1. Breton M.D. Physical activity—The major unaccounted impediment to closed loop control. J. Diabetes Sci. Technol. 2008;2:169–174. doi: 10.1177/193229680800200127.
    1. Dalla Man C., Breton M.D., Cobelli C. Physical activity into the meal glucose-insulin model of type 1 diabetes: In silico studies. J. Diabetes Sci. Technol. 2009;3:56–67. doi: 10.1177/193229680900300107.
    1. Georgiou P., Toumazou C. Chemical bionics—A novel design approach using ion sensitive field effect transistors; Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference; Baltimore, MD, USA. 20–22 November 2008; pp. 229–232.
    1. Wong A.W., McDonagh D., Omeni O., Nunn C., Hernandez-Silveira M., Burdett A.J. Sensium: An ultra-low-power wireless body sensor network platform: Design & application challenges; Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 3–6 September 2009; pp. 6576–6579.
    1. Lee C.-S., Kim S.K., Kim M. Ion-sensitive field-effect transistor for biological sensing. Sensors. 2009;9:7111–7131. doi: 10.3390/s90907111.
    1. Puricel S.G., Ruiz J. Le diabète et l’ère de la télémédecine. Rev. Med. Suisse. 2014;10:1246–1248.
    1. Chan M., Estève D., Fourniols J.-Y., Escriba C., Campo E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012;56:137–156. doi: 10.1016/j.artmed.2012.09.003.
    1. El-Gayar O., Timsina P., Nawar N., Eid W. A systematic review of IT for diabetes self-management: Are we there yet? Int. J. Med. Inform. 2013;82:637–652. doi: 10.1016/j.ijmedinf.2013.05.006.
    1. Müller H., Schumacher M., Godel D., Abu Khaled O., Mooser F., Ding S. MediCoordination: A practical approach to interoperability in the Swiss health system. Stud. Health Technol. Inform. 2009;150:210–214.
    1. Brugés A., Bromuri S., Barry M., Jiménez del Toro O., Mazurkiewicz M.R., Kardas P., Pegueroles J., Schumacher M. Processing diabetes mellitus composite events in MAGPIE. J. Med. Syst. 2016;40 doi: 10.1007/s10916-015-0377-1.
    1. Kafali O., Bromuri S., Sindlar M., van der Weide T., Aguilar Pelaez E., Schaechtle U., Alves B., Zufferey D., Rodriguez-Villegas E., Ignaz Schumacher M., et al. COMMODITY12: A smart e-health environment for diabetes management. JAISE. 2013;5:479–502.
    1. Zufferey D., Bromuri S., Schumacher M. Analyse continue, multicouches et multiparamétriques des diabètes de type 1 et 2. Swiss Med. Inf. 2014;30 doi: 10.4414/smi.30.327.
    1. Teng X.F., Zhang Y.T., Poon C.C.Y., Bonato P. Wearable Medical Systems for p-Health. IEEE Rev. Biomed. Eng. 2008;1:62–74. doi: 10.1109/RBME.2008.2008248.
    1. Brugés A., Bromuri S., Pegueroles J., Schumacher M. Recent Advances in Ambient Intelligence and Context-Aware Computing. IGI Global; Hershey, PA, USA: 2015. Current trends in interoperability, scalability, and security of pervasive healthcare systems; pp. 227–247.
    1. Ali R., Siddiqi M.H., Idris M., Ali T., Hussain S., Huh E.-N., Kang B.H., Lee S. GUDM: Automatic generation of unified datasets for learning and reasoning in healthcare. Sensors. 2015;15:15772–15798. doi: 10.3390/s150715772.
    1. Årsand E., Frøisland H., Skrøvseth S.O., Chomutare T., Tatara N., Hartvigsen G., Tufano J.T. Mobile health applications to assist patients with diabetes: Lessons learned and design implications. J. Diabetes Sci. Technol. 2012;6:1197–1206. doi: 10.1177/193229681200600525.
    1. Mulvaney S.A., Ritterband L.M., Bosslet L. Mobile intervention design in diabetes: Review and recommendations. Curr. Diab. Rep. 2011;11:486–493. doi: 10.1007/s11892-011-0230-y.
    1. Caburnay C.A., Graff K., Harris J.K., McQueen A., Smith M., Fairchild M., Kreuter M.W. Evaluating diabetes mobile applications for health literate designs and functionality. Prev. Chronic Dis. 2015;12:1–13. doi: 10.5888/pcd12.140433.
    1. Farmer A., Gibson O.J., Tarassenko L., Neil A. A systematic review of telemedicine interventions to support blood glucose self-monitoring in diabetes. Diabet. Med. 2005;22:1372–1378. doi: 10.1111/j.1464-5491.2005.01627.x.
    1. Russell-Minda E., Jutai J., Speechley M., Bradley K., Chudyk A., Petrella R. Health Technologies for Monitoring and Managing Diabetes: A Systematic Review. J. Diabetes Sci. Technol. 2009;3:1460–1471. doi: 10.1177/193229680900300628.
    1. Baron J., McBain H., Newman S. The impact of mobile monitoring technologies on glycosylated hemoglobin in diabetes: A systematic review. J. Diabetes Sci. Technol. 2012;6:1185–1196. doi: 10.1177/193229681200600524.
    1. Sheehy S., Cohen G., Owen K.R. Self-management of diabetes in children and young adults using technology and smartphone applications. Curr. Diabetes Rev. 2014;10:298–301. doi: 10.2174/1573399810666141010113050.
    1. Marcolino M.S., Maia J.X., Alkmim M.B.M., Boersma E., Ribeiro A.L. Telemedicine application in the care of diabetes patients: Systematic review and meta-analysis. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0079246.
    1. Boaz M., Hellman K., Wainstein J. An automated telemedicine system improves patient-reported wellbeing. Diabetes Technol. Ther. 2009;11:181–186. doi: 10.1089/dia.2008.0048.
    1. Lawton J., Kirkham J., Rankin D., Barnard K., Cooper C.L., Taylor C., Heller S., Elliott J., REPOSE Group Collaborators. Perceptions and experiences of using automated bolus advisors amongst people with type 1 diabetes: A longitudinal qualitative investigation. Diabetes Res. Clin. Pract. 2014;106:443–450. doi: 10.1016/j.diabres.2014.09.011.
    1. Drion I., Pameijer L.R., van Dijk P.R., Groenier K.H., Kleefstra N., Bilo H.J. The effects of a mobile phone application on quality of life in patients with type 1 diabetes mellitus: A randomized controlled trial. J. Diabetes Sci. Technol. 2015;9:1086–1091. doi: 10.1177/1932296815585871.
    1. Harrison S., Stadler M., Ismail K., Amiel S., Herrmann-Werner A. Are patients with diabetes mellitus satisfied with technologies used to assist with diabetes management and coping: A structured review. Diabetes Technol. Ther. 2014;16:771–783. doi: 10.1089/dia.2014.0062.

Source: PubMed

3
Předplatit