Post-treatment haemolysis in African children with hyperparasitaemic falciparum malaria; a randomized comparison of artesunate and quinine

C Fanello, M Onyamboko, S J Lee, C Woodrow, S Setaphan, K Chotivanich, P Buffet, S Jauréguiberry, K Rockett, K Stepniewska, N P J Day, N J White, A M Dondorp, C Fanello, M Onyamboko, S J Lee, C Woodrow, S Setaphan, K Chotivanich, P Buffet, S Jauréguiberry, K Rockett, K Stepniewska, N P J Day, N J White, A M Dondorp

Abstract

Background: Parenteral artesunate is the treatment of choice for severe malaria. Recently, haemolytic anaemia occurring 1 to 3 weeks after artesunate treatment of falciparum malaria has been reported in returning travellers in temperate countries.

Methods: To assess these potential safety concerns in African children, in whom most deaths from malaria occur, an open-labelled, randomized controlled trial was conducted in Kinshasa, Democratic Republic of Congo. 217 children aged between 6 months and 14 years with acute uncomplicated falciparum malaria and parasite densities over 100,000/μL were randomly allocated to intravenous artesunate or quinine, hospitalized for 3 days and then followed for 42 days.

Results: The immediate reduction in haemoglobin was less with artesunate than with quinine: median (IQR) fall at 72 h 1.4 g/dL (0.90-1.95) vs. 1.7 g/dL (1.10-2.40) (p = 0.009). This was explained by greater pitting then recirculation of once infected erythrocytes. Only 5% of patients (in both groups) had a ≥ 10% reduction in haemoglobin after day 7 (p = 0.1). One artesunate treated patient with suspected concomitant sepsis had a protracted clinical course and required a blood transfusion on day 14.

Conclusions: Clinically significant delayed haemolysis following parenteral artesunate is uncommon in African children hospitalised with acute falciparum malaria and high parasitaemias.

Trial registration: ClinicalTrials.gov ; Identifier: NCT02092766 (18/03/2014).

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Oxford Tropical Medicine Ethics Committee and the University of Kinshasa, School of Public Health institutional review board. The study was explained to caregivers in French or Lingala and they were requested to sign a consent form to allow their child’s participation in the study. The intervention was assigned by the study nurse, after the doctor confirmed eligibility and the caregivers had signed the informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flowchart
Fig. 2
Fig. 2
Mean haemoglobin a, median oi-RBCs b, reticulocyte counts c and LDH d, by treatment, over time

References

    1. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010;376(9753):1647–1657. doi: 10.1016/S0140-6736(10)61924-1.
    1. Dondorp A, Nosten F, Stepniewska K, Day N, White N, South East Asian Quinine Artesunate Malaria Trial g Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005;366(9487):717–725. doi: 10.1016/S0140-6736(05)67176-0.
    1. WHO . Management of Severe Malaria a Practical Handbook. 3. Geneva: WHO; 2013.
    1. Mohapatra MK, Srinivas D, Kar AK, Murmu M. Anaphylactic reaction to intravenous artesunate. J Assoc Physicians India. 2009;57:183–184.
    1. Leonardi E, Gilvary G, White NJ, Nosten F. Severe allergic reactions to oral artesunate: a report of two cases. Trans R Soc Trop Med Hyg. 2001;95(2):182–183. doi: 10.1016/S0035-9203(01)90157-9.
    1. Price R, van Vugt M, Phaipun L, Luxemburger C, Simpson J, McGready R, ter Kuile F, Kham A, Chongsuphajaisiddhi T, White NJ, et al. Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. Am J Trop Med Hyg. 1999;60(4):547–555. doi: 10.4269/ajtmh.1999.60.547.
    1. Rehman K, Lotsch F, Kremsner PG, Ramharter M. Haemolysis associated with the treatment of malaria with artemisinin derivatives: a systematic review of current evidence. Int J Infect Dis. 2014;29:268–273. doi: 10.1016/j.ijid.2014.09.007.
    1. Rolling T, Agbenyega T, Krishna S, Kremsner PG, Cramer JP. Delayed haemolysis after artesunate treatment of severe malaria - review of the literature and perspective. Travel Med Infect Dis. 2015;13(2):143–149. doi: 10.1016/j.tmaid.2015.03.003.
    1. Phiri K, Esan M, van Hensbroek MB, Khairallah C, Faragher B, ter Kuile FO. Intermittent preventive therapy for malaria with monthly artemether-lumefantrine for the post-discharge management of severe anaemia in children aged 4-59 months in southern Malawi: a multicentre, randomised, placebo-controlled trial. Lancet Infect Dis. 2012;12(3):191–200. doi: 10.1016/S1473-3099(11)70320-6.
    1. WHO . Guidelines for the treatment of malaria. 2. Geneva: WHO; 2010.
    1. Angus BJ, Chotivanich K, Udomsangpetch R, White NJ. In vivo removal of malaria parasites from red blood cells without their destruction in acute falciparum malaria. Blood. 1997;90(5):2037–2040.
    1. Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia. Blood. 2000;95(1):360–362.
    1. MMV. Experts group meeting on delayed anaemia following treatment with injectable artesunate. Wien: MMV; 2013. .
    1. Flegg JA, Guerin PJ, White NJ, Stepniewska K. Standardizing the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J. 2011;10:339. doi: 10.1186/1475-2875-10-339.
    1. WHO: Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity In., vol. WHO/NMH/NHD/MNM/11.1 2011.
    1. NIAID/DAIDS . Table for grading the severity of adult and pediatric adverse events. 2014.
    1. Jaureguiberry S, Ndour PA, Roussel C, Ader F, Safeukui I, Nguyen M, Biligui S, Ciceron L, Mouri O, Kendjo E, et al. Postartesunate delayed hemolysis is a predictable event related to the lifesaving effect of artemisinins. Blood. 2014;124(2):167–175. doi: 10.1182/blood-2014-02-555953.
    1. Looareesuwan S, Davis TM, Pukrittayakamee S, Supanaranond W, Desakorn V, Silamut K, Krishna S, Boonamrung S, White NJ. Erythrocyte survival in severe falciparum malaria. Acta Trop. 1991;48(4):263–270. doi: 10.1016/0001-706X(91)90014-B.
    1. Newton PN, Chotivanich K, Chierakul W, Ruangveerayuth R, Teerapong P, Silamut K, Looareesuwan S, White NJ. A comparison of the in vivo kinetics of plasmodium falciparum ring-infected erythrocyte surface antigen-positive and -negative erythrocytes. Blood. 2001;98(2):450–457. doi: 10.1182/blood.V98.2.450.
    1. Cao XT, Bethell DB, Pham TP, Ta TT, Tran TN, Nguyen TT, Pham TT, Nguyen TT, Day NP, White NJ. Comparison of artemisinin suppositories, intramuscular artesunate and intravenous quinine for the treatment of severe childhood malaria. Trans R Soc Trop Med Hyg. 1997;91(3):335–342. doi: 10.1016/S0035-9203(97)90099-7.
    1. Bunnag D, Viravan C, Looareesuwan S, Karbwang J, Harinasuta T. Clinical trial of artesunate and artemether on multidrug resistant falciparum malaria in Thailand. A preliminary report. Southeast Asian J Trop Med Public Health. 1991;22(3):380–385.
    1. Rolling T, Agbenyega T, Issifou S, Adegnika AA, Sylverken J, Spahlinger D, Ansong D, Lohr SJ, Burchard GD, May J, et al. Delayed hemolysis after treatment with parenteral artesunate in African children with severe malaria--a double-center prospective study. J Infect Dis. 2014;209(12):1921–1928. doi: 10.1093/infdis/jit841.
    1. Leowattana W, Krudsood S, Tangpukdee N, Brittenham G, Looareesuwan S. Defective erythropoietin production and reticulocyte response in acute plasmodium falciparum malaria-associated anemia. Southeast Asian J Trop Med Public Health. 2008;39(4):581–588.
    1. Hendriksen IC, White LJ, Veenemans J, Mtove G, Woodrow C, Amos B, Saiwaew S, Gesase S, Nadjm B, Silamut K, et al. Defining falciparum-malaria-attributable severe febrile illness in moderate-to-high transmission settings on the basis of plasma PfHRP2 concentration. J Infect Dis. 2013;207(2):351–361. doi: 10.1093/infdis/jis675.

Source: PubMed

3
Předplatit