Examining Different Motor Learning Paradigms for Improving Balance Recovery Abilities Among Older Adults, Random vs. Block Training-Study Protocol of a Randomized Non-inferiority Controlled Trial

Hadas Nachmani, Inbal Paran, Moti Salti, Ilan Shelef, Itshak Melzer, Hadas Nachmani, Inbal Paran, Moti Salti, Ilan Shelef, Itshak Melzer

Abstract

Introduction: Falls are the leading cause of fatal and nonfatal injuries among older adults. Studies showed that older adults can reduce the risk of falls after participation in an unexpected perturbation-based balance training (PBBT), a relatively novel approach that challenged reactive balance control. This study aims to investigate the effect of the practice schedule (i.e., contextual interference) on reactive balance function and its transfer to proactive balance function (i.e., voluntary step execution test and Berg balance test). Our primary hypothesis is that improvements in reactive balance control following block PBBT will be not inferior to the improvements following random PBBT. Methods and Analysis: This is a double-blind randomized controlled trial. Fifty community-dwelling older adults (over 70 years) will be recruited and randomly allocated to a random PBBT group (n = 25) or a block PBBT group (n = 25). The random PBBT group will receive eight training sessions over 4 weeks that include unexpected machine-induced perturbations of balance during hands-free treadmill walking. The block PBBT group will be trained by the same perturbation treadmill system, but only one direction will be trained in each training session, and the direction of the external perturbations will be announced. Both PBBT groups (random PBBT and block PBBT) will receive a similar perturbation intensity during training (which will be customized to participant's abilities), the same training period, and the same concurrent cognitive tasks during training. The generalization and transfer of learning effects will be measured by assessing the reactive and proactive balance control during standing and walking before and after 1 month of PBBT, for example, step and multiple steps and fall thresholds, Berg balance test, and fear of falls. The dependent variable will be rank transformed prior to conducting the analysis of covariance (ANCOVA) to allow for nonparametric analysis. Discussion: This research will explore which of the balance retraining paradigms is more effective to improve reactive balance and proactive balance control in older adults (random PBBT vs. block PBBT) over 1 month. The research will address key issues concerning balance retraining: older adults' neuromotor capacities to optimize training responses and their applicability to real-life challenges. Clinical Trial Registration: Helsinki research ethics approval has been received (Soroka Medical Center approval #0396-16-SOR; MOH_2018-07-22_003536; www.ClinicalTrials.gov, NCT04455607).

Keywords: balance perturbation training; block training; elderly people; falls; postural balance; random training.

Conflict of interest statement

IM owns a patent on some of the technology used in the perturbation system. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Nachmani, Paran, Salti, Shelef and Melzer.

Figures

Figure 1
Figure 1
Study flowchart.
Figure 2
Figure 2
Details of the intervention training programs.
Figure 3
Figure 3
Photo of the BaMPer system. The system is composed of a motor-driven treadmill, mounted on a moving platform, with a motion controller, a safety harness, and an operator station (see text for more details).

References

    1. Batcir S., Sharon H., Shani G., Levitsky N., Gimmon Y., Kurz I., et al. . (2018). The inter-observer reliability and agreement of lateral balance recovery responses in older and younger adults. J. Electromyogr. Kinesiol. 40, 39–47. 10.1016/j.jelekin.2018.03.002
    1. Bauer C., Gröger I., Rupprecht R., Gassmann K. G. (2008). Intrasession reliability of force platform parameters in community-dwelling older adults. Arch. Phys. Med. Rehabil. 89, 1977–1982. 10.1016/j.apmr.2008.02.033
    1. Berg K. O., Wood-Dauphinee S. L., Williams J. I., Gayton D. (1989). Measuring balance in elderly: preliminary development of an instrument. Physiother. Canada 41, 304–311. 10.3138/ptc.41.6.304
    1. Bergen G., Stevens M. R., Burns E. R. (2016). Falls and fall injuries among adults aged ≥65 years—United States, 2014. Morb. Mortal. Wkly. Rep 65, 993–998. 10.15585/mmwr.mm6537a2
    1. Bhatt T., Pai Y.-C. (2009). Prevention of slip-related backward balance loss: the effect of session intensity and frequency on long-term retention. Arch. Phys. Med. Rehabil. 90, 34–42. 10.1016/j.apmr.2008.06.021
    1. Bhatt T., Yang F., Pai Y.-C. (2012). Learning to resist gait-slip falls: long-term retention in community-dwelling older adults. Arch. Phys. Med. Rehabil. 93, 557–564. 10.1016/j.apmr.2011.10.027
    1. Carty C. P., Cronin N. J., Nicholson D., Lichtwark G. A., Mills P. M., Kerr G., et al. . (2015). Reactive stepping behavior in response to forward loss of balance predicts future falls in community-dwelling older adults. Age Ageing. 44, 109–115. 10.1093/ageing/afu054
    1. Centers for Disease Control and Prevention (2017). National center for injury prevention and control. Available online at: .
    1. Chiari L., Cappello A., Lenzi D., Della Croce U. (2000). An improved technique for the extraction of stochastic parameters from stabilograms. Gait Posture 12, 225–234. 10.1016/s0966-6362(00)00086-2
    1. Clemson L., Fiatarone Singh M. A., Bundy A., Cumming R. G., Manollaras K., O’Loughlin P., et al. . (2012). Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomized parallel trial. BMJ 345:e4547. 10.1136/bmj.e4547
    1. Coelho D. B., Teixeira L. A. (2017). Cognition and balance control: does processing of explicit contextual cues of impending perturbations modulate automatic postural responses? Exp. Brain Res. 235, 2375–2390. 10.1007/s00221-017-4980-x
    1. Coelho D. B., Teixeira L. A. (2018). Disambiguating the cognitive and adaptive effects of contextual cues of an impending balance perturbation. Hum. Mov. Sci. 61, 90–98. 10.1016/j.humov.2018.07.008
    1. Coelho D. B., Silva M. B., de Lima-Pardini A. C., Martinelli A. R., da Silva Baptista T., Ramos R. T., et al. . (2018). Young and older adults adapt automatic postural responses equivalently to repetitive perturbations but are unable to use predictive cueing to optimize recovery of balance stability. Neurosci. Lett. 685, 167–172. 10.1016/j.neulet.2018.08.043
    1. Collins J. J., De Luca C. J. (1993). Open-loop and closed-loop control of posture: a random walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95, 308–318. 10.1007/BF00229788
    1. Collins J., De Luca C., Burrows A., Lipsitz L. A. (1995). Age-related changes in open-loop and closed-loop postural control mechanisms. Exp. Brain Res. 104, 480–492. 10.1007/BF00231982
    1. de Souza C. R., Betelli M. T., Takazono P. S., de Oliveira J. A., Coelho D. B., Duysens J., et al. . (2019). Evaluation of balance recovery stability from unpredictable perturbations through the compensatory arm and leg movements (CALM) scale. PLoS One 14:e0221398. 10.1371/journal.pone.0221398
    1. de Xivry J.-J. O., Lefèvre P. (2015). Formation of model-free motor memories during motor adaptation depends on perturbation schedule. J. Neurophysiol. 113, 2733–2741. 10.1152/jn.00673.2014
    1. Del Rey P. (1982). Effects of contextual interference on the memory of older females differing in levels of physical activity. Percept. Mot. Skills 55, 171–180. 10.2466/pms.1982.55.1.171
    1. Dick M. B., Hsieh S., Dick-Muehlke C., Davis D. S., Cotman C. W. (2000). The variability of practice hypothesis in motor learning: does it apply to Alzheimer’s disease?. Brain Cogn. 44, 470–489. 10.1006/brcg.2000.1206
    1. Dijkstra B. W., Horak F. B., Kamsma Y. P. T., Peterson D. S. (2015). Older adults can improve compensatory stepping with repeated postural perturbations. Front. Aging Neurosci. 7:201. 10.3389/fnagi.2015.00201
    1. Drowatzky K. L., Drowatzky J. N. (1999). Physical training programs for the elderly. Clin. Kinesiol. 53, 52–62.
    1. Eichelberger P., Ferraro M., Minder U., Denton T., Blasimann A., Krause F., et al. . (2016). Analysis of accuracy in optical motion capture—a protocol for laboratory setup evaluation. J. Biomech. 49, 2085–2088. 10.1016/j.jbiomech.2016.05.007
    1. Fazeli D., Taheri H., Kakhki A. S. (2017). Random versus blocked practice to enhance mental representation in golf putting. Percept. Mot. Skills 124, 674–688. 10.1177/0031512517704106
    1. Florence C. S., Bergen G., Atherly A., Burns E. R., Stevens J. A., Drake C. (2018). Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 66, 693–698. 10.1111/jgs.15304
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. 10.1016/0022-3956(75)90026-6
    1. Gabell A., Simons M. A., Nayak U. S. L. (1985). Falls in the healthy elderly: predisposing causes. Ergonomics 28, 965–975. 10.1080/00140138508963219
    1. Gerards M. H. G., McCrum C., Mansfield A., Meijer K. (2017). Perturbation-based balance training for falls reduction among older adults: current evidence and implications for clinical practice. Geriatr. Gerontol. Int. 17, 2294–2303. 10.1111/ggi.13082
    1. Gillespie L. D., Gillespie W. J., Robertson M. C., Lamb S. E., Cumming R. G., Rowe B. H. (2003). Interventions for preventing falls in elderly people. Cochrane Database Syst. Rev. 4:CD000340. 10.1002/14651858.CD000340
    1. Gillespie L. D., Robertson M. C., Gillespie W. J., Sherrington C., Gates S., Clemson L. M., et al. . (2012). Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 9:CD007146. 10.1002/14651858.CD007146.pub3
    1. Grabiner M. D., Bareither M. L., Gatts S., Marone J., Troy K. L. (2012). Task-specific training reduces trip related fall risk in women. Med. Sci. Sports Exerc. 44, 2410–2414. 10.1249/MSS.0b013e318268c89f
    1. Guadagnoli M. A., Lee T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36, 212–224. 10.3200/JMBR.36.2.212-224
    1. Halvarsson A., Oddsson L., Olsson E., Farén E., Pettersson A., Ståhle A. (2011). Effects of new, individually adjusted, progressive balance group training for elderly people with fear of falling and tend to fall: a randomized controlled trial. Clin. Rehabil. 25, 1021–1031. 10.1177/0269215511411937
    1. Handelzalts S., Kenner-Furman M., Gray G., Soroker N., Shani G., Melzer I. (2019). Effects of perturbation-based balance training in subacute persons with stroke: a randomized controlled trial. Neurorehabil. Neural Repair 33, 213–224. 10.1177/1545968319829453
    1. Hilliard M. J., Martinez K. M., Janssen I., Edwards B., Mille M.-L., Zhang Y., et al. . (2008). Lateral balance factors predict future falls in community-living older adults. Arch. Phys. Med. Rehabil. 89, 1708–1713. 10.1016/j.apmr.2008.01.023
    1. Hue O. A., Seynnes O., Ledrole D., Colson S. S., Bernard P.-L. (2004). Effects of a physical activity program on postural stability in older people. Aging Clin. Exp. Res. 16, 356–362. 10.1007/BF03324564
    1. Hurt C. P., Rosenblatt N. J., Grabiner M. D. (2011). Form of the compensatory stepping response to repeated laterally directed postural disturbances. Exp. Brain Res. 214, 557–566. 10.1007/s00221-011-2854-1
    1. Jamieson B. A., Rogers W. A. (2000). Age-related effects of blocked and random practice schedules on learning a new technology. J. Gerontol. B Psychol. Sci. Soc. Sci. 55, P343–P353. 10.1093/geronb/55.6.p343
    1. Graser J. V., Bastiaenen C. H. G., van Hedel H. J. A. (2019). The role of the practice order: a systematic review about contextual interference in children. PLoS One 14:e0209979. 10.1371/journal.pone.0209979
    1. Kausler D. H., Wiley J. G., Phillips P. L. (1990). Adult age differences in memory for massed and distributed repeated actions. Psychol. Aging 5, 530–534. 10.1037/0882-7974.5.4.530
    1. King M. B., Tinetti M. E. (1996). A multifactorial approach to reducing injurious falls. Clin. Geriatr. Med. 12, 745–759.
    1. Kurz I., Gimmon Y., Shapiro A., Debi R., Snir Y., Melzer I. (2016). Unexpected perturbations training improves balance control and voluntary stepping times in older adults—a double blind randomized control trial. BMC Geriatr. 16:58. 10.1186/s12877-016-0223-4
    1. Kurz I., Oddsson L., Melzer I. (2013). Characteristics of balance control in elderly persons who fall with injury—a prospective study. J. Electromyogr. Kinesiol. 23, 814–819. 10.1016/j.jelekin.2013.04.001
    1. Lage G. M., Ugrinowitsch H., Apolinário-Souza T., Vieira M. M., Albuquerque M. R., Benda R. N. (2015). Repetition and variation in motor practice: a review of neural correlates. Neurosci. Biobehav. Rev. 57, 132–141. 10.1016/j.neubiorev.2015.08.012
    1. Lazarus J. A., Haynes J. M. (1997). Isometric pinch force control and learning in older adults. Exp. Aging Res. 23, 179–199. 10.1080/03610739708254032
    1. Lee T. D., Magill R. A. (1983). The locus of contextual interference in motor-skill acquisition. J. Exp. Psychol. Learn. Mem. Cogn. 9, 730–746. 10.1037/0278-7393.9.4.730
    1. Lin C.-H., Fisher B. E., Winstein C. J., Wu A. D., Gordon J. (2008). Contextual interference effect: elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. J. Mot. Behav. 40, 578–586. 10.3200/JMBR.40.6.578-586
    1. Liu-Ambrose T., Donaldson M. G., Ahamed Y., Graf P., Cook W. L., Close J., et al. . (2008). Otago home-based strength and balance retraining improves executive functioning in older fallers: a randomized controlled trial. J. Am. Geriatr. Soc. 56, 1821–1830. 10.1111/j.1532-5415.2008.01931.x
    1. Lord S. R., Castell S., Corcoran J., Dayhew J., Matters B., Shan A., et al. . (2003). The effect of group exercise on physical functioning and falls in frail older people living in retirement villages: a randomized, controlled trial. J. Am. Geriatr. Soc. 51, 1685–1692. 10.1046/j.1532-5415.2003.51551.x
    1. Lurie J. D., Zagaria A. B., Pidgeon D. M., Forman J. L., Spratt K. F. (2013). Pilot comparative effectiveness study of surface perturbation treadmill training to prevent falls in older adults. BMC Geriatr. 13:49. 10.1186/1471-2318-13-49
    1. Maki B. E., Cheng K. C.-C., Mansfield A., Scovil C. Y., Perry S. D., Peters A. L., et al. . (2008). Preventing falls in older adults: new interventions to promote more effective change-in-support balance reactions. J. Electromyogr. Kinesiol. 18, 243–254. 10.1016/j.jelekin.2007.06.005
    1. Maki B. E., Holliday P. J., Topper A. K. (1994). A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49, M72–M84. 10.1093/geronj/49.2.m72
    1. Mansfield A., Aqui A., Fraser J. E., Rajachandrakumar R., Lakhani B., Patterson K. K. (2017a). Can augmented feedback facilitate learning a reactive balance task among older adults? Exp. Brain Res. 235, 293–304. 10.1007/s00221-016-4790-6
    1. Mansfield A., Schinkel-Ivy A., Danells C. J., Aqui A., Aryan R., Biasin L., et al. . (2017b). Does perturbation training prevent falls after discharge from stroke rehabilitation? A prospective cohort study with historical control. J. Stroke Cerebrovasc. Dis. 26, 2174–2180. 10.1016/j.jstrokecerebrovasdis.2017.04.041
    1. Mansfield A., Peters A. L., Liu B. A., Maki B. E. (2007). A perturbation-based balance training program for older adults: study protocol for a randomized controlled trial. BMC Geriatr. 7:12. 10.1186/1471-2318-7-12
    1. Mansfield A., Peters A. L., Liu B. A., Maki B. E. (2010). Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial. Phys. Ther. 90, 476–491. 10.2522/ptj.20090070
    1. Mansfield A., Wong J. S., Bryce J., Knorr S., Patterson K. K. (2015). Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys. Ther. 95, 700–709. 10.2522/ptj.20140090
    1. McCrum C., Gerards M. H. G., Karamanidis K., Zijlstra W., Meijer K. (2017). A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. Eur. Rev. Aging Phys. Activ. 14:3. 10.1186/s11556-017-0173-7
    1. McIlroy W. E., Maki B. E. (1999). The control of lateral stability during rapid stepping reactions evoked by antero-posterior perturbation: does anticipatory control play a role?. Gait Posture 9, 190–198. 10.1016/s0966-6362(99)00013-2
    1. McMurdo M. E., Millar A. M., Daly F. (2000). A randomized controlled trial of fall prevention strategies in old peoples’ homes. Gerontology 46, 83–87. 10.1159/000022139
    1. Melzer I., Benjuya N., Kaplanski J. (2001). Age-related changes of postural control: the effect of cognitive task. Gerontology 47, 189–194. 10.1159/000052797
    1. Melzer I., Benjuya N., Kaplanski J. (2004). Postural stability of elderly: a comparison between fallers and non-fallers. Age Ageing 33, 602–607. 10.1093/ageing/afh218
    1. Melzer I., Kurz I., Oddsson L. I. E. (2010a). A retrospective analysis of balance control parameters in elderly fallers and non-fallers. Clin. Biomech. 25, 984–988. 10.1016/j.clinbiomech.2010.07.007
    1. Melzer I., Kurz I., Shahar D., Oddsson L. I. E. (2010b). Do voluntary step reactions under dual task condition have an added value over single task for fall prediction? A prospective study. Aging Clin. Exp. Res. 22, 360–366. 10.1007/BF03324940
    1. Melzer I., Kurz I., Sarid O., Jette A. M. (2007a). Relationship between self-reported function and disability and balance performance measures in the elderly. J. Rehabil. Res. Dev. 44, 685–691. 10.1682/jrrd.2006.10.0133
    1. Melzer I., Kurz I., Shahar D., Levi M., Oddsson L. (2007b). Application of the voluntary step execution test to identify elderly fallers. Age Ageing 36, 532–537. 10.1093/ageing/afm068
    1. Melzer I., Shtilman I., Rosenblatt N., Oddsson L. I. E. (2007c). Reliability of voluntary step execution behavior under single and dual task conditions. J. Neuroeng. Rehabil. 4:16. 10.1186/1743-0003-4-16
    1. Melzer I., Kurz I., Shahar D., Levi M., Oddsson L. I. E. (2009). Predicting injury from falls in the elderly: comparison of voluntary step reaction times in injured and non-injured fallers—a prospective study. J. Am. Geriatr. Soc. 57, 743–745. 10.1111/j.1532-5415.2009.02198.x
    1. Melzer I., Oddsson L. I. E. (2004). The effect of a cognitive task on voluntary step execution in healthy elderly individuals. J. Am. Geriatr. Soc. 52, 1255–1262. 10.1111/j.1532-5415.2004.52353.x
    1. Okubo Y., Schoene D., Caetano M. J. D., Pliner E. M., Osuka Y., Toson B., et al. . (2020). Stepping impairment and falls in older adults: a systematic review and meta-analysis of volitional and reactive step tests. Ageing Res. Rev. 66:101238. 10.1016/j.arr.2020.101238
    1. Okubo Y., Schoene D., Lord S. R. (2017). Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br. J. Sports Med. 51, 586–593. 10.1136/bjsports-2015-095452
    1. Pai Y.-C., Bhatt T., Yang F., Wang E. (2014a). Perturbation training can reduce community dwelling older adults’ annual fall risk: a randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1586–1594. 10.1093/gerona/glu087
    1. Pai Y.-C., Yang F., Bhatt T., Wang E. (2014b). Learning from laboratory-induced falling: long-term motor retention among older adults. Age 369640. 10.1007/s11357-014-9640-5
    1. Pai Y.-C., Bhatt T. S. (2007). Repeated-slip training: an emerging paradigm for prevention of slip-related falls among older adults. Phys. Ther. 87, 1478–1491. 10.2522/ptj.20060326
    1. Pavol M. J., Runtz E. F., Pai Y.-C. (2004). Young and older adults exhibit proactive and reactive adaptations to repeated slip exposure. J. Gerontol. A Biol. Sci. Med. Sci. 59, 494–502. 10.1093/gerona/59.5.m494
    1. Pavol M. J., Runtz E. F., Edwards B. J., Pai Y.-C. (2002). Age influences the outcome of a slipping perturbation during initial but not repeated exposures. J. Gerontol. A Biol. Sci. Med. Sci. 57, M496–M503. 10.1093/gerona/57.8.m496
    1. Rubenstein L. Z. (2006). Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 35, ii37–ii41. 10.1093/ageing/afl084
    1. Schumi J., Wittes J. T. (2011). Through the looking glass: understanding non-inferiority. Trials 12:106. 10.1186/1745-6215-12-106
    1. Shapiro A., Melzer I. (2010). Balance perturbation system to improve balance compensatory responses during walking in old persons. J. Neuroeng. Rehabil. 7:32. 10.1186/1743-0003-7-32
    1. Shea J. B., Morgan R. L. (1979). Contextual interference effects on the acquisition, retention and transfer of a motor skill. J. Exp. Psychol. Learn. Mem. Cogn. 5, 179–187. 10.1037/0278-7393.5.2.179
    1. Sherrington C., Fairhall N. J., Wallbank G. K., Tiedemann A., Michaleff Z. A., Howard K., et al. . (2019). Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 1:CD012424. 10.1002/14651858.CD012424.pub2
    1. Shimada H., Obuchi S., Furuna T., Suzuki T. (2004). New intervention program for preventing falls among frail elderly people: the effects of perturbed walking exercise using a bilateral separated treadmill. Am. J. Phys. Med. Rehabil. 83, 493–499. 10.1097/01.phm.0000130025.54168.91
    1. Sihvonen S., Era P., Helenius M. (2004). Postural balance and health-related factors in middle-aged and older women with injurious falls and non-fallers. Aging Clin. Exp. Res. 16, 139–146. 10.1007/BF03324543
    1. Skelton D., Dinan S., Campbell M., Rutherford O. (2005). Tailored group exercise (falls management exercise—FaME) reduces falls in community-dwelling older frequent fallers (an RCT). Age Ageing 34, 636–639. 10.1093/ageing/afi174
    1. Statistical Solutions Ltd. (2020). nQuery 8—Power Sample Size for Group Sequential Trials version 8.6.1.0
    1. Takazono P. S., Ribeiro de Souza C., Ávila de Oliveira J., Coelho D. B., Teixeira L. A. (2020). High contextual interference in perturbation-based balance training leads to persistent and generalizable stability gains of compensatory limb movements. Exp. Brain Res. 238, 1249–1263. 10.1007/s00221-020-05806-x
    1. Van Ooteghem K., Frank J. S., Horak F. B. (2009). Practice-related improvements in posture control differ between young and older adults exposed to continuous, variable amplitude oscillations of the support surface. Exp. Brain Res. 199, 185–193. 10.1007/s00221-009-1995-y
    1. Wolf S. L., Barnhart H. X., Kutner N. G., McNeely E., Coogler C., Xu T., et al. . (2003). Selected as the best article in the 1990s: reducing frailty and falls in older persons: an investigation of tai chi and computerized balance training. J. Am. Geriatr. Soc. 51, 1794–1803. 10.1046/j.1532-5415.2003.51566.x
    1. Wright D., Verwey W., Buchanen J., Chen J., Rhee J., Immink M. (2016). Consolidating behavioral and neurophysiologic findings to explain the influence of contextual interference during motor sequence learning. Psychon. Bull. Rev. 23, 1–21. 10.3758/s13423-015-0887-3
    1. Yardley L., Beyer N., Hauer K., Kempen G., Piot-Ziegler C., Todd C. (2005). Development and initial validation of the falls efficacy scale-international (FES-I). Age Ageing 34, 614–619. 10.1093/ageing/afi196

Source: PubMed

3
Předplatit