Salience network glutamate and brain connectivity in medication-naïve first episode patients - A multimodal magnetic resonance spectroscopy and resting state functional connectivity MRI study

Jose O Maximo, Frederic Briend, William P Armstrong, Nina V Kraguljac, Adrienne C Lahti, Jose O Maximo, Frederic Briend, William P Armstrong, Nina V Kraguljac, Adrienne C Lahti

Abstract

Background: Salience network (SN) connectivity is altered in schizophrenia, but the pathophysiological origin remains poorly understood. The goal of this multimodal neuroimaging study was to investigate the role of glutamatergic metabolism as putative mechanism underlying SN dysconnectivity in first episode psychosis (FEP) subjects.

Methods: We measured glutamate + glutamine (Glx) in the dorsal anterior cingulate cortex (dACC) from 70 antipsychotic-naïve FEP subjects and 52 healthy controls (HC). The dACC was then used as seed to define positive and negative resting state functional connectivity (FC) of the SN. We used multiple regression analyses to test main effects and group interactions of Glx and FC associations.

Results: dACC Glx levels did not differ between groups. Positive FC was significantly reduced in FEP compared to HC, and no group differences were found in negative FC. Group interactions of Glx-FC associations were found within the SN for positive FC, and in parietal cortices for negative FC. In HC, higher Glx levels predicted greater positive FC in the dACC and insula, and greater negative FC of the lateral parietal cortex. These relationships were weaker or absent in FEP.

Conclusions: Here, we found that positive FC in the SN is already altered in medication-naïve FEP, underscoring the importance of considering both correlations and anticorrelations for characterization of pathology. Our data demonstrate that Glx and functional connectivity work differently in FEP than in HC, pointing to a possible mechanism underlying dysconnectivity in psychosis.

Trial registration: ClinicalTrials.gov NCT03442101 NCT02034253.

Keywords: Brain network; Dorsal anterior cingulate; First episode psychosis; Functional connectivity; Glutamate; Medication-naïve.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
A) Example voxel placement in the dorsal anterior cingulate cortex in one subject and its spectrum. The black line is a collected spectrum and the blue line is a model fit; B) Boxplot of Glx levels in antipsychotic-naïve FEP compared to HC. Each dot corresponds to one participant. The red line indicates the mean dACC Glx level for each group. HC, healthy controls; FEP, first episode psychosis; Cr, creatine; Cho, choline; Glx, glutamate + glutamine; NAA, N-acetyl aspartate; dACC, dorsal anterior cingulate cortex; and I.U., institutional unit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2
Fig. 2
A) Clusters of significant group differences in positive FC which indicate HC > FEP. Boxplot of FC where each dot corresponds to one participant. The red line indicates the mean FC value for each group. Clusters of significant group differences were combined and FC was extracted for data visualization purposes on the scatterplot below. All analyses were TFCE corrected. HC, healthy controls; FEP, first episode psychosis; FC, functional connectivity; dACC, dorsal anterior cingulate cortex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
A) Clusters where main effects and interaction between Glx and FC in the SN mask were found; B) clusters where main effects and interaction between Glx and FC in the SN anticorrelation mask were found. Clusters of group interactions in Glx-FC associations were combined and FC was extracted for data scatterplot visualization purposes. All analyses were TFCE corrected. HC, healthy controls; FEP, first episode psychosis; FC, functional connectivity; dACC, dorsal anterior cingulate cortex; Glx, glutamate + glutamine; TFCE, threshold-free cluster enhancement; and I.U., institutional unit.

References

    1. Amorim M., Moreira A., Marques A., Summavielle T. Brain metabolic abnormalities in schizophrenia patients. Eur. Psychiatry. 2017;41(S1):s802.
    1. Anhoj S., Odegaard Nielsen M., Jensen M.H., Ford K., Fagerlund B., Williamson P., Rostrup E. Alterations of Intrinsic Connectivity Networks in Antipsychotic-Naive First-Episode Schizophrenia. Schizophr. Bull. 2018;44(6):1332–1340. doi: 10.1093/schbul/sbx171.
    1. Benes F.M. The GABA system in schizophrenia: cells, molecules and microcircuitry. Schizophr. Res. 2015;167(1–3):1–3. doi: 10.1016/j.schres.2015.07.017.
    1. Bojesen K.B., Ebdrup B.H., Jessen K., Sigvard A., Tangmose K., Edden R.A.E., Glenthoj B.Y. Treatment response after 6 and 26 weeks is related to baseline glutamate and GABA levels in antipsychotic-naive patients with psychosis. Psychol. Med. 2019;1–12 doi: 10.1017/S0033291719002277.
    1. Briend F., Nelson E.A., Maximo O., Armstrong W.P., Kraguljac N.V., Lahti A.C. Hippocampal glutamate and hippocampus subfield volumes in antipsychotic-naive first episode psychosis subjects and relationships to duration of untreated psychosis. Transl. Psychiatry. 2020;10(1):137. doi: 10.1038/s41398-020-0812-z.
    1. Cadena E.J., White D.M., Kraguljac N.V., Reid M.A., Lahti A.C. Evaluation of fronto-striatal networks during cognitive control in unmedicated patients with schizophrenia and the effect of antipsychotic medication. NPJ Schizophr. 2018;4(1):8. doi: 10.1038/s41537-018-0051-y.
    1. Cadena E.J., White D.M., Kraguljac N.V., Reid M.A., Maximo J.O., Nelson E.A., Gawronski B.A., Lahti A.C. A longitudinal multimodal neuroimaging study to examine relationships between resting state glutamate and task related BOLD response in schizophrenia. Front. Psychiatry. 2018;9 doi: 10.3389/fpsyt.2018.00632.
    1. Cadena E.J., White D.M., Kraguljac N.V., Reid M.A., Jindal R., Pixley R.M., Lahti A.C. Cognitive control network dysconnectivity and response to antipsychotic treatment in schizophrenia. Schizophr. Res. 2019;204:262–270. doi: 10.1016/j.schres.2018.07.045.
    1. Carpenter W.T., Jr., Gold J.M., Lahti A.C., Queern C.A., Conley R.R., Bartko J.J., Appelbaum P.S. Decisional capacity for informed consent in schizophrenia research. Arch. Gen. Psychiatry. 2000;57(6):533–538. doi: 10.1001/archpsyc.57.6.533.
    1. de la Fuente-Sandoval C., León-Ortiz P., Azcárraga M., Stephano S., Favila R., Díaz-Galvis L., Alvarado-Alanis P., Ramírez-Bermúdez J., Graff-Guerrero A. Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry. 2013;70(10):1057. doi: 10.1001/jamapsychiatry.2013.289.
    1. Dean B., Thomas N., Scarr E., Udawela M. Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl. Psychiatry. 2016;6(11):e949. doi: 10.1038/tp.2016.226.
    1. Dempster K., Jeon P., MacKinley M., Williamson P., Theberge J., Palaniyappan L. Early treatment response in first episode psychosis: a 7-T magnetic resonance spectroscopic study of glutathione and glutamate. Mol. Psychiatry. 2020;25(8):1640–1650. doi: 10.1038/s41380-020-0704-x.
    1. Duncan N.W., Wiebking C., Tiret B., Marjanska M., Hayes D.J., Lyttleton O., Northoff G. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS ONE. 2013;8(4) doi: 10.1371/journal.pone.0060312.
    1. Duncan N.W., Wiebking C., Northoff G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans-a review of multimodal imaging studies. Neurosci. Biobehav. Rev. 2014;47:36–52. doi: 10.1016/j.neubiorev.2014.07.016.
    1. Egerton A., Modinos G., Ferrera D., McGuire P. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl. Psychiatry. 2017;7(6):e1147. doi: 10.1038/tp.2017.124.
    1. Enzi B., Duncan N.W., Kaufmann J., Tempelmann C., Wiebking C., Northoff G. Glutamate modulates resting state activity in the perigenual anterior cingulate cortex - a combined fMRI-MRS study. Neuroscience. 2012;227:102–109. doi: 10.1016/j.neuroscience.2012.09.039.
    1. Falkenberg L.E., Westerhausen R., Craven A.R., Johnsen E., Kroken R.A., L⊘berg E.-M., Specht K., Hugdahl K. Impact of glutamate levels on neuronal response and cognitive abilities in schizophrenia. Neuroimage Clin. 2014;4:576–584. doi: 10.1016/j.nicl.2014.03.014.
    1. Gasparovic C., Song T., Devier D., Bockholt H.J., Caprihan A., Mullins P.G., Posse S., Jung R.E., Morrison L.A. Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn. Reson. Med. 2006;55(6):1219–1226. doi: 10.1002/mrm.20901.
    1. Goelman G., Gordon N., Bonne O., Gozzi A. Maximizing negative correlations in resting-state functional connectivity MRI by time-lag. PLoS ONE. 2014;9(11):e111554. doi: 10.1371/journal.pone.0111554.
    1. Gong Q., Hu X., Pettersson-Yeo W., Xu X., Lui S., Crossley N., Mechelli A. Network-level dysconnectivity in drug-naive first-episode psychosis: dissociating transdiagnostic and diagnosis-specific alterations. Neuropsychopharmacology. 2017;42(4):933–940. doi: 10.1038/npp.2016.247.
    1. Gussew A., Erdtel M., Hiepe P., Rzanny R., Reichenbach J.R. Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in (1)H-MR spectroscopic volumes. MAGMA. 2012;25(5):321–333. doi: 10.1007/s10334-012-0305-z.
    1. Hyder F., Patel A.B., Gjedde A., Rothman D.L., Behar K.L., Shulman R.G. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J. Cereb. Blood Flow Metab. 2006;26(7):865–877. doi: 10.1038/sj.jcbfm.9600263.
    1. Jauhar S., McCutcheon R., Borgan F., Veronese M., Nour M., Pepper F., Rogdaki M., Stone J., Egerton A., Turkheimer F., McGuire P., Howes O.D. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry. 2018;5(10):816–823. doi: 10.1016/S2215-0366(18)30268-2.
    1. Jenkinson M., Beckmann C.F., Behrens T.E.J., Woolrich M.W., Smith S.M. Fsl. Neuroimage. 2012;62(2):782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Jeon P., Limongi R., Ford S.D., MacKinley M., Dempster K., Theberge J., Palaniyappan L. Progressive changes in glutamate concentration in early stages of schizophrenia: a longitudinal 7-tesla MRS study. Schizophr. Bull. Open. 2021;2(1):sgaa072.
    1. Kapogiannis D., Reiter D.A., Willette A.A., Mattson M.P. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64:112–119. doi: 10.1016/j.neuroimage.2012.09.029.
    1. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry. 2003;160(1):13–23. doi: 10.1176/appi.ajp.160.1.13.
    1. Kerns J.G., Cohen J.D., MacDonald A.W., 3rd, Johnson M.K., Stenger V.A., Aizenstein H., Carter C.S. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am. J. Psychiatry. 2005;162(10):1833–1839. doi: 10.1176/appi.ajp.162.10.1833.
    1. Kraguljac N.V., Reid M.A., White D.M., den Hollander J., Lahti A.C. Regional decoupling of N-acetyl-aspartate and glutamate in schizophrenia. Neuropsychopharmacology. 2012;37(12):2635–2642. doi: 10.1038/npp.2012.126.
    1. Kraguljac N.V., White D.M., Reid M.A., Lahti A.C. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry. 2013;70(12):1294–1302. doi: 10.1001/jamapsychiatry.2013.2437.
    1. Kraguljac N.V., White D.M., Hadley J.A., Visscher K., Knight D., ver Hoef L., Falola B., Lahti A.C. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone. Neuroimage Clin. 2016;10:146–158. doi: 10.1016/j.nicl.2015.11.015.
    1. Kraguljac N.V., Frölich M.A., Tran S., White D.M., Nichols N., Barton-McArdle A., Reid M.A., Bolding M.S., Lahti A.C. Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol. Psychiatry. 2017;22(4):562–569. doi: 10.1038/mp.2016.122.
    1. Kraguljac N.V., Morgan C.J., Reid M.A., White D.M., Jindal R.D., Sivaraman S., Martinak B.K., Lahti A.C. A longitudinal magnetic resonance spectroscopy study investigating effects of risperidone in the anterior cingulate cortex and hippocampus in schizophrenia. Schizophr. Res. 2019;210:239–244. doi: 10.1016/j.schres.2018.12.028.
    1. Kraguljac N.V., Lahti A.C. Neuroimaging as a window into the pathophysiological mechanisms of schizophrenia. Front. Psychiatry. 2021;12 doi: 10.3389/fpsyt.2021.613764.
    1. Kraguljac N.V., Anthony T., Morgan C.J., Jindal R.D., Burger M.S., Lahti A.C. White matter integrity, duration of untreated psychosis, and antipsychotic treatment response in medication-naive first-episode psychosis patients. Mol. Psychiatry. 2020 doi: 10.1038/s41380-020-0765-x.
    1. Kraguljac N.V., Monroe W.S., Anthony T., Jindal R.D., Hill H., Lahti A.C. Neurite orientation dispersion and density imaging (NODDI) and duration of untreated psychosis in antipsychotic medication-naïve first episode psychosis patients. Neuroimage Rep. 2021;1(1):100005. doi: 10.1016/j.ynirp.2021.100005.
    1. Li T., Wang Q., Zhang J., Rolls E.T., Yang W., Palaniyappan L., Feng J. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophr. Bull. 2017;43(2):436–448. doi: 10.1093/schbul/sbw099.
    1. Limongi R., Jeon P., Mackinley M., Das T., Dempster K., Théberge J., Bartha R., Wong D., Palaniyappan L. Glutamate and dysconnection in the salience network: neurochemical, effective connectivity, and computational evidence in schizophrenia. Biol. Psychiatry. 2020;88(3):273–281. doi: 10.1016/j.biopsych.2020.01.021.
    1. Limongi R., Jeon P., Théberge J., Palaniyappan L. Counteracting effects of glutathione on the glutamate-driven excitation/inhibition imbalance in first-episode schizophrenia: a 7T MRS and dynamic causal modeling study. Antioxidants (Basel) 2021;10(1):75. doi: 10.3390/antiox10010075.
    1. Marshall C.R., Howrigan D.P., Merico D., Thiruvahindrapuram B., Wu W., Greer D.S., Antaki D., Shetty A., Holmans P.A., Pinto D., Gujral M., Brandler W.M., Malhotra D., Wang Z., Fajarado K.V.F., Maile M.S., Ripke S., Agartz I., Albus M., Alexander M., Amin F., Atkins J., Bacanu S.A., Belliveau R.A., Bergen S.E., Bertalan M., Bevilacqua E., Bigdeli T.B., Black D.W., Bruggeman R., Buccola N.G., Buckner R.L., Bulik-Sullivan B., Byerley W., Cahn W., Cai G., Cairns M.J., Campion D., Cantor R.M., Carr V.J., Carrera N., Catts S.V., Chambert K.D., Cheng W., Cloninger C.R., Cohen D., Cormican P., Craddock N., Crespo-Facorro B., Crowley J.J., Curtis D., Davidson M., Davis K.L., Degenhardt F., Del Favero J., DeLisi L.E., Dikeos D., Dinan T., Djurovic S., Donohoe G., Drapeau E., Duan J., Dudbridge F., Eichhammer P., Eriksson J., Escott-Price V., Essioux L., Fanous A.H., Farh K.-H., Farrell M.S., Frank J., Franke L., Freedman R., Freimer N.B., Friedman J.I., Forstner A.J., Fromer M., Genovese G., Georgieva L., Gershon E.S., Giegling I., Giusti-Rodríguez P., Godard S., Goldstein J.I., Gratten J., de Haan L., Hamshere M.L., Hansen M., Hansen T., Haroutunian V., Hartmann A.M., Henskens F.A., Herms S., Hirschhorn J.N., Hoffmann P., Hofman A., Huang H., Ikeda M., Joa I., Kähler A.K., Kahn R.S., Kalaydjieva L., Karjalainen J., Kavanagh D., Keller M.C., Kelly B.J., Kennedy J.L., Kim Y., Knowles J.A., Konte B., Laurent C., Lee P., Lee S.H., Legge S.E., Lerer B., Levy D.L., Liang K.-Y., Lieberman J., Lönnqvist J., Loughland C.M., Magnusson P.K.E., Maher B.S., Maier W., Mallet J., Mattheisen M., Mattingsdal M., McCarley R.W., McDonald C., McIntosh A.M., Meier S., Meijer C.J., Melle I., Mesholam-Gately R.I., Metspalu A., Michie P.T., Milani L., Milanova V., Mokrab Y., Morris D.W., Müller-Myhsok B., Murphy K.C., Murray R.M., Myin-Germeys I., Nenadic I., Nertney D.A., Nestadt G., Nicodemus K.K., Nisenbaum L., Nordin A., O'Callaghan E., O'Dushlaine C., Oh S.-Y., Olincy A., Olsen L., O'Neill F.A., Van Os J., Pantelis C., Papadimitriou G.N., Parkhomenko E., Pato M.T., Paunio T., Perkins D.O., Pers T.H., Pietiläinen O., Pimm J., Pocklington A.J., Powell J., Price A., Pulver A.E., Purcell S.M., Quested D., Rasmussen H.B., Reichenberg A., Reimers M.A., Richards A.L., Roffman J.L., Roussos P., Ruderfer D.M., Salomaa V., Sanders A.R., Savitz A., Schall U., Schulze T.G., Schwab S.G., Scolnick E.M., Scott R.J., Seidman L.J., Shi J., Silverman J.M., Smoller J.W., Söderman E., Spencer C.C.A., Stahl E.A., Strengman E., Strohmaier J., Stroup T.S., Suvisaari J., Svrakic D.M., Szatkiewicz J.P., Thirumalai S., Tooney P.A., Veijola J., Visscher P.M., Waddington J., Walsh D., Webb B.T., Weiser M., Wildenauer D.B., Williams N.M., Williams S., Witt S.H., Wolen A.R., Wormley B.K., Wray N.R., Wu J.Q., Zai C.C., Adolfsson R., Andreassen O.A., Blackwood D.H.R., Bramon E., Buxbaum J.D., Cichon S., Collier D.A., Corvin A., Daly M.J., Darvasi A., Domenici E., Esko T., Gejman P.V., Gill M., Gurling H., Hultman C.M., Iwata N., Jablensky A.V., Jönsson E.G., Kendler K.S., Kirov G., Knight J.o., Levinson D.F., Li Q.S., McCarroll S.A., McQuillin A., Moran J.L., Mowry B.J., Nöthen M.M., Ophoff R.A., Owen M.J., Palotie A., Pato C.N., Petryshen T.L., Posthuma D., Rietschel M., Riley B.P., Rujescu D., Sklar P., St Clair D., Walters J.T.R., Werge T., Sullivan P.F., O'Donovan M.C., Scherer S.W., Neale B.M., Sebat J. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 2017;49(1):27–35. doi: 10.1038/ng.3725.
    1. Maximo J.O., Nelson E.A., Armstrong W.P., Kraguljac N.V., Lahti A.C. Duration of untreated psychosis correlates with brain connectivity and morphology in medication-naive patients with first-episode psychosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2020;5(2):231–238. doi: 10.1016/j.bpsc.2019.10.014.
    1. McCutcheon R.A., Nour M.M., Dahoun T., Jauhar S., Pepper F., Expert P., Veronese M., Adams R.A., Turkheimer F., Mehta M.A., Howes O.D. Mesolimbic dopamine function is related to salience network connectivity: an integrative positron emission tomography and magnetic resonance study. Biol. Psychiatry. 2019;85(5):368–378.
    1. McCutcheon R.A., Pillinger T., Rogdaki M., Bustillo J., Howes O.D. Glutamate connectivity associations converge upon the salience network in schizophrenia and healthy controls. Transl. Psychiatry. 2021;11(1):322. doi: 10.1038/s41398-021-01455-y.
    1. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. doi: 10.1016/j.tics.2011.08.003.
    1. Merritt K., Egerton A., Kempton M.J., Taylor M.J., McGuire P.K. Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry. 2016;73(7):665–674. doi: 10.1001/jamapsychiatry.2016.0442.
    1. Minzenberg M.J., Laird A.R., Thelen S., Carter C.S., Glahn D.C. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry. 2009;66(8):811–822. doi: 10.1001/archgenpsychiatry.2009.91.
    1. Mullins P.G., Chen H., Xu J., Caprihan A., Gasparovic C. Comparative reliability of proton spectroscopy techniques designed to improve detection of J-coupled metabolites. Magn. Reson. Med. 2008;60(4):964–969. doi: 10.1002/mrm.v60:410.1002/mrm.21696.
    1. Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009;44(3):893–905. doi: 10.1016/j.neuroimage.2008.09.036.
    1. Nelson E.A., Kraguljac N.V., Maximo J.O., Briend F., Armstrong W., Ver Hoef L.W., Lahti A.C. Hippocampal dysconnectivity and altered glutamatergic modulation of the default mode network: a combined resting-state connectivity and magnetic resonance spectroscopy study in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimag. 2020 doi: 10.1016/j.bpsc.2020.04.014.
    1. Overall J.E., Gorham D.R. The brief psychiatric rating scale. Psychol. Rep. 1962;10(3):799–812.
    1. Overbeek G., Gawne T.J., Reid M.A., Salibi N., Kraguljac N.V., White D.M., Lahti A.C. Relationship between cortical excitation and inhibition and task-induced activation and deactivation: a combined magnetic resonance spectroscopy and functional magnetic resonance imaging study at 7T in first-episode psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(2):121–130. doi: 10.1016/j.bpsc.2018.10.002.
    1. Pan Y., Dempster K., Jeon P., Theberge J., Khan A.R., Palaniyappan L. Acute conceptual disorganization in untreated first-episode psychosis: a combined magnetic resonance spectroscopy and diffusion imaging study of the cingulum. J. Psychiatry Neurosci. 2021;46(3):E337–E346. doi: 10.1503/jpn.200167.
    1. Park M.T.M., Jeon P., Khan A.R., Dempster K., Chakravarty M.M., Lerch J.P., MacKinley M., Théberge J., Palaniyappan L. Hippocampal neuroanatomy in first episode psychosis: a putative role for glutamate and serotonin receptors. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2021;110:110297. doi: 10.1016/j.pnpbp.2021.110297.
    1. Pu W., Li L.i., Zhang H., Ouyang X., Liu H., Zhao J., Li L., Xue Z., Xu K.e., Tang H., Shan B., Liu Z., Wang F. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia. Schizophr. Res. 2012;141(1):15–21. doi: 10.1016/j.schres.2012.07.017.
    1. Randolph C., Tierney M.C., Mohr E., Chase T.N. The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. J. Clin. Exp. Neuropsychol. 1998;20(3):310–319. doi: 10.1076/jcen.20.3.310.823.
    1. Reid M.A., Stoeckel L.E., White D.M., Avsar K.B., Bolding M.S., Akella N.S., Knowlton R.C., den Hollander J.A., Lahti A.C. Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biol. Psychiatry. 2010;68(7):625–633. doi: 10.1016/j.biopsych.2010.04.013.
    1. Reid M.A., Salibi N., White D.M., Gawne T.J., Denney T.S., Lahti A.C. 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia. Schizophr. Bull. 2019;45(1):180–189. doi: 10.1093/schbul/sbx190.
    1. Roberts R.C., McCollum L.A., Schoonover K.E., Mabry S.J., Roche J.K., Lahti A.C. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr. Res. 2020 doi: 10.1016/j.schres.2020.01.016.
    1. Rothman D.L., Behar K.L., Hyder F., Shulman R.G. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu. Rev. Physiol. 2003;65(1):401–427. doi: 10.1146/annurev.physiol.65.092101.142131.
    1. Scheidegger O., Wingeier K., Stefan D., Graveron-Demilly D., van Ormondt D., Wiest R., Slotboom J. Optimized quantitative magnetic resonance spectroscopy for clinical routine. Magn. Reson. Med. 2013;70(1):25–32. doi: 10.1002/mrm.v70.110.1002/mrm.24455.
    1. Schizophrenia Working Group of the Psychiatric Genomics, C Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–427. doi: 10.1038/nature13595.
    1. Schubert F., Gallinat J., Seifert F., Rinneberg H. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. Neuroimage. 2004;21(4):1762–1771. doi: 10.1016/j.neuroimage.2003.11.014.
    1. Sepulcre J., Sabuncu M.R., Johnson K.A. Network assemblies in the functional brain. Curr. Opin. Neurol. 2012;25(4):384–391. doi: 10.1097/WCO.0b013e328355a8e8.
    1. Shukla D.K., Wijtenburg S.A., Chen H., Chiappelli J.J., Kochunov P., Hong L.E., Rowland L.M. Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia. Schizophr. Bull. 2019;45(3):647–658. doi: 10.1093/schbul/sby075.
    1. Shulman R.G., Hyder F., Rothman D.L. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior. J. Cereb. Blood Flow Metab. 2014;34(11):1721–1735. doi: 10.1038/jcbfm.2014.145.
    1. Singh K.D. Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. Neuroimage. 2012;62(2):1121–1130. doi: 10.1016/j.neuroimage.2012.01.028.
    1. Skene N.G., Bryois J., Bakken T.E., Breen G., Crowley J.J., Gaspar Héléna.A., Giusti-Rodriguez P., Hodge R.D., Miller J.A., Muñoz-Manchado A.B., O’Donovan M.C., Owen M.J., Pardiñas A.F., Ryge J., Walters J.T.R., Linnarsson S., Lein E.S., Sullivan P.F., Hjerling-Leffler J. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 2018;50(6):825–833. doi: 10.1038/s41588-018-0129-5.
    1. Smith A.J., Blumenfeld H., Behar K.L., Rothman D.L., Shulman R.G., Hyder F. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc. Natl. Acad. Sci. U.S.A. 2002;99(16):10765–10770. doi: 10.1073/pnas.132272199.
    1. Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061.
    1. Stone J.M., Day F., Tsagaraki H., Valli I., McLean M.A., Lythgoe D.J., O'Gorman R.L., Barker G.J., McGuire P.K. Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol. Psychiatry. 2009;66(6):533–539. doi: 10.1016/j.biopsych.2009.05.006.
    1. Sydnor V.J., Roalf D.R. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophr. Res. 2020;226:61–69. doi: 10.1016/j.schres.2020.06.028.
    1. Theberge J., Bartha R., Drost D.J., Menon R.S., Malla A., Takhar J., Williamson P.C. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am. J. Psychiatry. 2002;159(11):1944–1946. doi: 10.1176/appi.ajp.159.11.1944.
    1. Tomasi D., Wang G.J., Volkow N.D. Energetic cost of brain functional connectivity. Proc. Natl. Acad. Sci. U.S.A. 2013;110(33):13642–13647. doi: 10.1073/pnas.1303346110.
    1. Vanhamme L., van den Boogaart A., Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 1997;129(1):35–43. doi: 10.1006/jmre.1997.1244.
    1. Wang A.M., Pradhan S., Coughlin J.M., Trivedi A., DuBois S.L., Crawford J.L., Sedlak T.W., Nucifora F.C., Nestadt G., Nucifora L.G., Schretlen D.J., Sawa A., Barker P.B. Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychiatry. 2019;76(3):314. doi: 10.1001/jamapsychiatry.2018.3637.
    1. Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073.
    1. Williamson P.C., Allman J.M. A framework for interpreting functional networks in schizophrenia. Front. Hum. Neurosci. 2012;6:184. doi: 10.3389/fnhum.2012.00184.
    1. Wilson M., Andronesi O., Barker P.B., Bartha R., Bizzi A., Bolan P.J., Brindle K.M., Choi I., Cudalbu C., Dydak U., Emir U.E., Gonzalez R.G., Gruber S., Gruetter R., Gupta R.K., Heerschap A., Henning A., Hetherington H.P., Huppi P.S., Hurd R.E., Kantarci K., Kauppinen R.A., Klomp D.W.J., Kreis R., Kruiskamp M.J., Leach M.O., Lin A.P., Luijten P.R., Marjańska M., Maudsley A.A., Meyerhoff D.J., Mountford C.E., Mullins P.G., Murdoch J.B., Nelson S.J., Noeske R., Öz Gülin, Pan J.W., Peet A.C., Poptani H., Posse S., Ratai E., Salibi N., Scheenen T.W.J., Smith I.C.P., Soher B.J., Tkáč I., Vigneron D.B., Howe F.A. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn. Reson. Med. 2019;82(2):527–550. doi: 10.1002/mrm.v82.210.1002/mrm.27742.

Source: PubMed

3
Předplatit