Water-Based and Land-Based Exercise for Children with Post-COVID-19 Condition (postCOVIDkids)-Protocol for a Randomized Controlled Trial

Anna Ogonowska-Slodownik, Marta Kinga Labecka, Katarzyna Kaczmarczyk, Renae J McNamara, Michał Starczewski, Jan Gajewski, Agnieszka Maciejewska-Skrendo, Natalia Morgulec-Adamowicz, Anna Ogonowska-Slodownik, Marta Kinga Labecka, Katarzyna Kaczmarczyk, Renae J McNamara, Michał Starczewski, Jan Gajewski, Agnieszka Maciejewska-Skrendo, Natalia Morgulec-Adamowicz

Abstract

The most common symptoms of post-COVID-19 condition in children are fatigue, shortness of breath, exercise intolerance, and weakness. The post-COVID-19 condition in children can be very debilitating and lead to prolonged school absences, high morbidity, and limitations in daily functioning. The aim of this research project is to determine the effectiveness of land-based and water-based exercise interventions on exercise capacity, fatigue, health-related quality of life, and pulmonary function in children with post-COVID-19 condition. This study is a prospective randomized controlled study with pre- and post-intervention assessment. Participants will be recruited from Warsaw's primary schools and primary healthcare units according to the inclusion criteria: (i) symptoms of post-COVID-19 condition lasting more than one month following initial COVID-19 infection confirmed by the diagnosis by general practitioner (including obligatory fatigue and shortness of breath/respiratory problems); (ii) age 10-12 years old. Participants meeting the inclusion criteria will be randomized to one of three groups: water-based exercise, land-based exercise, or control (no exercise). We hope this study will provide guidance for long-COVID-19 rehabilitation in children.

Keywords: SARS-CoV-2; fatigue; long COVID; quality of life.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. World Health Organization . A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus. WHO; Geneva, Switzerland: 2021.
    1. Asadi-Pooya A.A., Nemati H., Shahisavandi M., Akbari A., Emami A., Lotfi M., Rostamihosseinkhani M., Barzegar Z., Kabiri M., Zeraatpisheh Z., et al. Long COVID in children and adolescents. World J. Pediatr. 2021;17:495–499. doi: 10.1007/s12519-021-00457-6.
    1. Izquierdo-Pujol J., Moron-Lopez S., Dalmau J., Gonzalez-Aumatell A., Carreras-Abad C., Mendez M., Rodrigo C., Martinez-Picado J. Post COVID-19 Condition in Children and Adolescents: An Emerging Problem. Front. Pediatr. 2022;10:894204. doi: 10.3389/fped.2022.894204.
    1. Buonsenso D., Munblit D., De Rose C., Sinatti D., Ricchiuto A., Carfi A., Valentini P. Preliminary evidence on long COVID in children. Acta. Paediatr. 2021;110:2208–2211. doi: 10.1111/apa.15870.
    1. Ludvigsson J.F. Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta. Paediatr. 2021;110:914–921. doi: 10.1111/apa.15673.
    1. Brackel C.L.H., Lap C.R., Buddingh E.P., van Houten M.A., van der Sande L., Langereis E.J., Bannier M., Pijnenburg M.W.H., Hashimoto S., Terheggen-Lagro S.W.J. Pediatric long-COVID: An overlooked phenomenon? Pediatr. Pulmonol. 2021;56:2495–2502. doi: 10.1002/ppul.25521.
    1. Buonsenso D., Di Giuda D., Sigfrid L., Pizzuto D.A., Di Sante G., De Rose C., Lazzareschi I., Sali M., Baldi F., Chieffo D.P.R., et al. Evidence of lung perfusion defects and ongoing inflammation in an adolescent with post-acute sequelae of SARS-CoV-2 infection. Lancet Child Adolesc. Health. 2021;5:677–680. doi: 10.1016/S2352-4642(21)00196-6.
    1. Buonsenso D., Di Gennaro L., De Rose C., Morello R., D’Ilario F., Zampino G., Piazza M., Boner A.L., Iraci C., O’Connell S., et al. Long-term outcomes of pediatric infections: From traditional infectious diseases to long COVID. Future Microbiol. 2022;17:551–571. doi: 10.2217/fmb-2022-0031.
    1. Couzin-Frankel J. Clues to long COVID. Science. 2022;376:1261–1265. doi: 10.1126/science.add4297.
    1. Agostini F., Mangone M., Ruiu P., Paolucci T., Santilli V., Bernetti A. Rehabilitation setting during and after COVID-19: An overview on recommendations. J. Rehabil. Med. 2021;53:jrm00141. doi: 10.2340/16501977-2776.
    1. Siddiq M.A.B., Rathore F.A., Clegg D., Rasker J.J. Pulmonary Rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk. J. Phys. Med. Rehabil. 2020;66:480–494. doi: 10.5606/tftrd.2020.6889.
    1. Humphreys H., Kilby L., Kudiersky N., Copeland R. Long COVID and the role of physical activity: A qualitative study. BMJ Open. 2021;11:e047632. doi: 10.1136/bmjopen-2020-047632.
    1. Kloze A., Wojtal Z. Assessment of online physiotherapy consultation for children—Parents’ opinions. Adv. Rehabil. 2021;35:32–39. doi: 10.5114/areh.2021.104906.
    1. Ziani M., Trépanier E., Goyette M. Voices of Teens and Young Adults on the Subject of Teleconsultation in the COVID-19 Context. J. Patient Exp. 2022;9:23743735221092565. doi: 10.1177/23743735221092565.
    1. McBride D.L. New Guidelines for Children Returning to Sports after COVID-19. J. Pediatr. Nurs. 2021;59:196–197. doi: 10.1016/j.pedn.2021.01.013.
    1. Elliott N., Martin R., Heron N., Elliott J., Grimstead D., Biswas A. Infographic. Graduated return to play guidance following COVID-19 infection. Br. J. Sport. Med. 2020;54:1174–1175. doi: 10.1136/bjsports-2020-102637.
    1. Dimitrijević L., Aleksandrović M., Madić D., Okičić T., Radovanović D., Daly D. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy. J. Hum. Kinet. 2012;32:167–174. doi: 10.2478/v10078-012-0033-5.
    1. Irandoust K., Taheri M., H’Mida C., Neto G.R., Trabelsi K., Ammar A., Souissi N., Chtourou H., Nikolaidis P.T., Rosemann T., et al. Exergaming and Aquatic Exercises Affect Lung Function and Weight Loss in Obese Children. Int. J. Sport. Med. 2021;42:566–572. doi: 10.1055/a-1372-3612.
    1. Samhan A., Mohamed N., Elnaggar R., Mahmoud W. Assessment of the Clinical Effects of Aquatic-based Exercises in the Treatment of Children with Juvenile Dermatomyositis: A 2 × 2 Controlled-Crossover Trial. Arch. Rheumatol. 2020;35:97–106. doi: 10.5606/ArchRheumatol.2020.7548.
    1. Ogonowska-Slodownik A., Kaczmarczyk K., Kokowicz G., Morgulec-Adamowicz N. Does the Aquatic Breathing Program Improve Lung Function in Adolescents with Scoliosis? Phys. Occup. Pediatr. 2021;41:259–270. doi: 10.1080/01942638.2020.1856285.
    1. Brown J.C., Moshe M., Blackwell A., Barclay W.S. Inactivation of SARS-CoV-2 in chlorinated swimming pool water. Water Res. 2021;205:117718. doi: 10.1016/j.watres.2021.117718.
    1. Westergren T., Fegran L., Nilsen T., Haraldstad K., Kittang O.B., Berntsen S. Active play exercise intervention in children with asthma: A PILOT STUDY. BMJ Open. 2016;6:e009721. doi: 10.1136/bmjopen-2015-009721.
    1. Basaran S., Guler-Uysal F., Ergen N., Seydaoglu G., Bingol-Karakoç G., Ufuk Altintas D. Effects of physical exercise on quality of life, exercise capacity and pulmonary function in children with asthma. J. Rehabil. Med. 2006;38:130–135. doi: 10.1080/16501970500476142.
    1. Chan A.W., Tetzlaff J.M., Altman D.G., Laupacis A., Gøtzsche P.C., Krleža-Jerić K., Hróbjartsson A., Mann H., Dickersin K., Berlin J.A., et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Schulz K.F., Altman D.G., Moher D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA J. Am. Med. Assoc. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053.
    1. Greenhalgh T., Knight M., A’Court C., Buxton M., Husain L. Management of post-acute COVID-19 in primary care. BMJ. 2020;370:m3026. doi: 10.1136/bmj.m3026.
    1. Marinov B. Doctoral Thesis. Medical University of Plovdiv; Plovdiv, Bulgaria: 2003. Physiologic and Pathophysiologic Aspects of Exercise Gas Exchange in School Children.
    1. Yelling M., Lamb K.L., Swaine I.L. Validity of a Pictorial Perceived Exertion Scale for Effort Estimation and Effort Production During Stepping Exercise in Adolescent Children. Eur. Phys. Educ. Rev. 2002;8:157–175. doi: 10.1177/1356336X020082007.
    1. Marinov B., Mandadjieva S., Kostianev S. Pictorial and verbal category-ratio scales for effort estimation in children. Child Care Health Dev. 2008;34:35–43. doi: 10.1111/j.1365-2214.2007.00767.x.
    1. Baba R. The oxygen uptake efficiency slope and its value in the assessment of cardiorespiratory functional reserve. Congest. Heart Fail. 2000;6:256–258. doi: 10.1111/j.1527-5299.2000.80164.x.
    1. Baba R., Nagashima M., Goto M., Nagano Y., Yokota M., Tauchi N., Nishibata K. Oxygen uptake efficiency slope: A new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J. Am. Coll. Cardiol. 1996;28:1567–1572. doi: 10.1016/S0735-1097(96)00412-3.
    1. Van Laethem C., Bartunek J., Goethals M., Nellens P., Andries E., Vanderheyden M. Oxygen uptake efficiency slope, a new submaximal parameter in evaluating exercise capacity in chronic heart failure patients. Am. Heart J. 2005;149:175–180. doi: 10.1016/j.ahj.2004.07.004.
    1. Haycock G.B., Schwartz G.J., Wisotsky D.H. Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J. Pediatr. 1978;93:62–66. doi: 10.1016/S0022-3476(78)80601-5.
    1. Kulik A., Szewczyk L. Kwestionariusz do badania zmęczenia. Psychometryczne właściwości. In: Oleś M., editor. Wybrane Zagadnienia z Psychologii Klinicznej i Osobowości. Metody Diagnostyczne w Badaniach Dzieci i Młodzieży. TN KUL; Lublin, Poland: 2005. pp. 41–61.
    1. Talarska D., Michalak M., Talarska P., Steinborn B. Children with epilepsy against their healthy peers and those with headaches: Differences-similarities. Neurol. Neurochir. Pol. 2018;52:35–43. doi: 10.1016/j.pjnns.2017.10.008.
    1. Varni J.W., Seid M., Kurtin P.S. PedsQL 4.0: Reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med. Care. 2001;39:800–812. doi: 10.1097/00005650-200108000-00006.
    1. Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019;200:e70–e88. doi: 10.1164/rccm.201908-1590ST.
    1. Crimi C., Impellizzeri P., Campisi R., Nolasco S., Spanevello A., Crimi N. Practical considerations for spirometry during the COVID-19 outbreak: Literature review and insights. Pulmonology. 2021;27:438–447. doi: 10.1016/j.pulmoe.2020.07.011.
    1. Quanjer P.H., Stanojevic S., Cole T.J., Baur X., Hall G.L., Culver B.H., Enright P.L., Hankinson J.L., Ip M.S., Zheng J., et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012;40:1324–1343. doi: 10.1183/09031936.00080312.
    1. Kikkenborg Berg S., Dam Nielsen S., Nygaard U., Bundgaard H., Palm P., Rotvig C., Vinggaard Christensen A. Long COVID symptoms in SARS-CoV-2-positive adolescents and matched controls (LongCOVIDKidsDK): A national, cross-sectional study. Lancet Child Adolesc. Health. 2022;6:240–248. doi: 10.1016/S2352-4642(22)00004-9.
    1. Lopez-Leon S., Wegman-Ostrosky T., Ayuzo Del Valle N.C., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. Long-COVID in children and adolescents: A systematic review and meta-analyses. Sci. Rep. 2022;12:9950. doi: 10.1038/s41598-022-13495-5.
    1. Calcaterra G., Fanos V., Cataldi L., Cugusi L., Crisafulli A., Bassareo P.P. Need for resuming sports and physical activity for children and adolescents following COVID-19 infection. Sport Sci. Health. 2022;18:1179–1185. doi: 10.1007/s11332-022-00930-3.
    1. Dotan A., David P., Arnheim D., Shoenfeld Y. The autonomic aspects of the post-COVID19 syndrome. Autoimmun. Rev. 2022;21:103071. doi: 10.1016/j.autrev.2022.103071.
    1. American Academy of Pediatrics COVID-19 Interim Guidance: Return To sports and Physical Activity. [(accessed on 1 October 2022)]. Availabe online:
    1. Huguet-Rodríguez M., Arias-Buría J.L., Huguet-Rodríguez B., Blanco-Barrero R., Braña-Sirgo D., Güeita-Rodríguez J. Impact of Aquatic Exercise on Respiratory Outcomes and Functional Activities in Children with Neuromuscular Disorders: Findings from an Open-Label and Prospective Preliminary Pilot Study. Brain Sci. 2020;10:458. doi: 10.3390/brainsci10070458.
    1. Ramachandran H.J., Jiang Y., Shan C.H., Tam W.W.S., Wang W. A systematic review and meta-analysis on the effectiveness of swimming on lung function and asthma control in children with asthma. Int. J. Nurs. Stud. 2021;120:103953. doi: 10.1016/j.ijnurstu.2021.103953.
    1. Moncada-Jiménez J., Carazo-Vargas P. A meta-analysis on the effects of exercise training on the VO2max in children and adolescents. Retos. 2015;27:184–187.
    1. Ahmadi Hekmatikar A.H., Ferreira Júnior J.B., Shahrbanian S., Suzuki K. Functional and Psychological Changes after Exercise Training in Post-COVID-19 Patients Discharged from the Hospital: A PRISMA-Compliant Systematic Review. Int. J. Environ. Res. Public. Health. 2022;19:2290. doi: 10.3390/ijerph19042290.
    1. Nopp S., Moik F., Klok F.A., Gattinger D., Petrovic M., Vonbank K., Koczulla A.R., Ay C., Zwick R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration. 2022;101:593–601. doi: 10.1159/000522118.
    1. Daynes E., Gerlis C., Chaplin E., Gardiner N., Singh S.J. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition—A cohort study. Chron. Respir. Dis. 2021;18:14799731211015691. doi: 10.1177/14799731211015691.
    1. Szczegielniak J., Bogacz K., Majorczyk E., Szczegielniak A., Łuniewski J. Post-COVID-19 rehabilitation—A Polish pilot program. Med. Pract. 2021;72:611–616. doi: 10.13075/mp.5893.01122.
    1. Mahon A.D., Vaccaro P. Ventilatory threshold and VO2max changes in children following endurance training. Med. Sci. Sport. Exerc. 1989;21:425–431. doi: 10.1249/00005768-198908000-00014.
    1. Hildenbrand K., Nordio S., Freson T.S., Becker B.E. Development of an Aquatic Exercise Training Protocol for the Asthmatic Population. Int. J. Aquat. Res. Educ. 2010;4:7. doi: 10.25035/ijare.04.03.07.
    1. Case-Smith J. An overview of occupational therapy for children. In: Case-Smith J., O’Brien J.C., editors. Occupational Therapy for Children. 6th ed. Mosby; St. Louis, MO, USA: 2010. pp. 1–21.
    1. Armijo-Olivo S., Dennett L., Arienti C., Dahchi M., Arokoski J., Heinemann A.W., Malmivaara A. Blinding in Rehabilitation Research: Empirical Evidence on the Association Between Blinding and Treatment Effect Estimates. Am. J. Phys. Med. Rehabil. Assoc. Acad. Physiatr. 2020;99:198–209. doi: 10.1097/PHM.0000000000001377.
    1. Malmivaara A., Armijo-Olivo S., Dennett L., Heinemann A.W., Negrini S., Arokoski J. Blinded or Nonblinded Randomized Controlled Trials in Rehabilitation Research: A Conceptual Analysis Based on a Systematic Review. Am. J. Phys. Med. Rehabil. Assoc. Acad. Physiatr. 2020;99:183–190. doi: 10.1097/PHM.0000000000001369.

Source: PubMed

3
Předplatit