Clinical and imaging outcomes after intrathecal injection of umbilical cord tissue mesenchymal stem cells in cerebral palsy: a randomized double-blind sham-controlled clinical trial

Man Amanat, Anahita Majmaa, Morteza Zarrabi, Masoumeh Nouri, Masood Ghahvechi Akbari, Ali Reza Moaiedi, Omid Ghaemi, Fatemeh Zamani, Sharif Najafi, Reza Shervin Badv, Massoud Vosough, Amir Ali Hamidieh, Mona Salehi, Hadi Montazerlotfelahi, Ali Reza Tavasoli, Morteza Heidari, Hossein Mohebi, Ali Fatemi, Amir Garakani, Mahmoud Reza Ashrafi, Man Amanat, Anahita Majmaa, Morteza Zarrabi, Masoumeh Nouri, Masood Ghahvechi Akbari, Ali Reza Moaiedi, Omid Ghaemi, Fatemeh Zamani, Sharif Najafi, Reza Shervin Badv, Massoud Vosough, Amir Ali Hamidieh, Mona Salehi, Hadi Montazerlotfelahi, Ali Reza Tavasoli, Morteza Heidari, Hossein Mohebi, Ali Fatemi, Amir Garakani, Mahmoud Reza Ashrafi

Abstract

Background: This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity.

Methods: Participants (4-14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR).

Results: There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen's d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen's d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (-1.0; 95%CI -1.31, -0.69) and control (β -0.72; 95%CI -1.18, -0.26; Cohen's d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST -0.035 × 10-3; 95%CI -0.04 × 10-3, -0.02 × 10-3. PTR -0.045 × 10-3; 95%CI -0.05 × 10-3, -0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group.

Conclusions: The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes.

Trial registration: The study was registered with ClinicalTrials.gov ( NCT03795974 ).

Keywords: Cerebral palsy; Children; Diffusion tensor imaging; Gross motor function; Stem cell.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
The ROI-based tractography of the corticospinal tract and posterior thalamic radiation
Fig. 2
Fig. 2
The flow cytometry analysis of UCT-MSC-specific markers. The first three photos (a, b, c) shows the cell gating to select single live UCT-MSCs. Othe photos (d-l) shows that the cells were negative for CD11b, CD31, CD34, CD45, and HLA-DR and were positive for CD29, CD73, CD90, and CD105
Fig. 3
Fig. 3
CONSORT flow diagram
Fig. 4
Fig. 4
Primary endpoint analysis

References

    1. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094–6. 10.1038/nature04960.
    1. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24. 10.1161/STROKEAHA.114.007028.
    1. Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–8. 10.1212/WNL.0000000000001329.
    1. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res. 2010;155(2):62–70. 10.1016/j.trsl.2009.07.006.
    1. Bachoud-Lévi AC. Multicentric Intracerebral Grafting in Huntington’s, Schramm C, Remy P, Aubin G, Blond S, Bocket L, Brugières P, Calvas F, Calvier E, Cassim F. Human Fetal cell therapy in Huntington’s disease: a randomized, multicenter, phase ii trial. Mov Disord. 2020;35(8):1323–35. 10.1002/mds.28201.
    1. Zhu H, Poon W, Liu Y, Leung GK, Wong Y, Feng Y, et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016;25(11):1925–43. 10.3727/096368916X691411.
    1. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121–43. 10.2217/rme.09.74.
    1. Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem Cells Dev. 2017;26(9):617–31. 10.1089/scd.2016.0349.
    1. Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, et al. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int. 2013;2013:1–11. 10.1155/2013/312501.
    1. Veneruso V, Rossi F, Villella A, Bena A, Forloni G, Veglianese P. Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J Control Release. 2019;300:141–153. doi: 10.1016/j.jconrel.2019.02.038.
    1. Azzopardi JI, Blundell R. Umbilical cord stem cells. Stem Cell Discov. 2018;8(01):1–11. doi: 10.4236/scd.2018.81001.
    1. Gluckman E, Broxmeyer HE, Auerbach AD. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–1178. doi: 10.1056/NEJM198910263211707.
    1. Riordan NH, Morales I, Fernández G, Allen N, Fearnot NE, Leckrone ME, et al. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J Transl Med. 2018;16(1):57. 10.1186/s12967-018-1433-7.
    1. Bartolucci J, Verdugo FJ, González PL, Larrea RE, Abarzua E, Goset C, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res. 2017;121(10):1192–204. 10.1161/CIRCRESAHA.117.310712.
    1. Meng F, Xu R, Wang S, Xu Z, Zhang C, Li Y, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduct Target Ther. 2020;5(1):172. 10.1038/s41392-020-00286-5.
    1. Rosenbaum P. A report: the definition and classification of cerebral palsy. Dev Med Child Neurol. 2007;49(6):480. doi: 10.1111/j.1469-8749.2007.00480.x.
    1. Toyokawa S, Maeda E, Kobayashi Y. Estimation of the number of children with cerebral palsy using nationwide health insurance claims data in Japan. Dev Med Child Neurol. 2017;59(3):317–321. doi: 10.1111/dmcn.13278.
    1. Zhang J, Yang C, Chen J, Luo M, Qu Y, Mu D, et al. Umbilical cord mesenchymal stem cells and umbilical cord blood mononuclear cells improve neonatal rat memory after hypoxia-ischemia. Behav Brain Res. 2019;362:56–63. 10.1016/j.bbr.2019.01.012.
    1. Serrenho I, Rosado M, Dinis A, MCardoso C, Grãos M, Manadas B, et al. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy: a systematic review of preclinical studies. Int J Mol Sci. 2021;22(6):3142.
    1. Phillips AW, Johnston MV, Fatemi A. The potential for cell-based therapy in perinatal brain injuries. Transl Stroke Res. 2013;4(2):137–148. doi: 10.1007/s12975-013-0254-5.
    1. Novak I, Walker K, Hunt RW, Wallace EM, Fahey M, Badawi N. Concise review: Stem cell interventions for people with cerebral palsy: systematic review with meta-analysis. Stem Cells Transl Med. 2016;5(8):1014–1025. doi: 10.5966/sctm.2015-0372.
    1. Jantzie LL, Scafidi J, Robinson S. Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Pediatr Res. 2018;83(1):345–355. doi: 10.1038/pr.2017.233.
    1. Eggenberger S, Boucard C, Schoeberlein A, Guzman R, Limacher A, Surbek D, et al. Stem cell treatment and cerebral palsy: systemic review and meta-analysis. World J Stem Cells. 2019;11(10):891–903. 10.4252/wjsc.v11.i10.891.
    1. Bobath K, Bobath B. The neurodevelopmental treatment. In: Scrutton D, editor. Management of the motor disorders of children with cerebral palsy. Oxford: Blackwell Scientific Publications Ltd; 1984. pp. 6–18.
    1. Knox V, Evans AL. Evaluation of the functional effects of a course of Bobath therapy in children with cerebral palsy: a preliminary study. Dev Med Child Neurol. 2002;44(7):447–460. doi: 10.1017/s0012162201002353.
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi: 10.1111/j.1469-8749.1997.tb07414.x.
    1. Rosenbaum PL, Palisano RJ, Bartlett DJ, Galuppi BE, Russell DJ. Development of the gross motor function classification system for cerebral palsy. Dev Med Child Neurol. 2008;50(4):249–253. doi: 10.1111/j.1469-8749.2008.02045.x.
    1. Becher JG, Pangalila RF, Vermeulen RJ, Barneveld TA, Raats CJI. Richtlijn diagnostiek en behandeling van kinderen met spastische Cerebrale Parese. Utrecht: Nederlandse Vereniging van Revalidatieartse; 2006.
    1. Russell DJ, Rosenbaum PL, Wright M, Avery LM. Gross motor function measure (GMFM-66 & GMFM-88) User's Manual. London: Mac Keith Press; 2013.
    1. Salehi R, Keshavarz A, Negahban H, Saeedi A, Shiravi A, Ghorbani S, et al. Development of the Persian version of gross motor function measure-88 (GMFM-88): A study of reliability. Trends Med Res. 2015;10(3):69–74.
    1. Gracies JM. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle Nerve. 2005;31(5):535–551. doi: 10.1002/mus.20284.
    1. Charalambous CP. Classic papers in orthopaedics. London: Springer; 2014. Interrater reliability of a modified Ashworth scale of muscle spasticity; pp. 415–417.
    1. Fosang AL, Galea MP, McCoy AT, Reddihough DS, Story I. Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol. 2003;45(10):664–670. doi: 10.1017/s0012162203001245.
    1. Clopton N, Dutton J, Featherston T, Grigsby A, Mobley J, Melvin J. Interrater and intrarater reliability of the Modified Ashworth Scale in children with hypertonia. Pediatr Phys Ther. 2005;17(4):268–274. doi: 10.1097/01.pep.0000186509.41238.1a.
    1. Ansari NN, Naghdi S, Arab TK, Jalaie S. The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect. NeuroRehabilitation. 2008;23(3):231–237. doi: 10.3233/NRE-2008-23304.
    1. Moradi Abbasabadi M, Akbarfahimi N, Hosseini SA, Rezasoltani P. Reliability of the Persian version of the pediatric evaluation of disability inventory in 3 to 9-year old children with cerebral palsy. J Mazandaran Univ Med Sci. 2015;25(130):129–137.
    1. Soleimani F, Vameghi R, Kazemnejad A, Fahimi NA, Nobakht Z, Rassafiani M. Psychometric properties of the persian version of cerebral palsy quality of life questionnaire for children. Iran J Child Neurol. 2015;9(1):76–86.
    1. Leemans A, Jeurissen B, Sijbers J, Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Hawaii, USA: 17th Annual Meeting of Intl Soc Mag Reson Med; 2009. p. 3537.
    1. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73(1):13–22. doi: 10.1093/biomet/73.1.13.
    1. Wang X, Hu H, Hua R, Yang J, Zheng P, Niu X, et al. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy. 2015;17(2):224–31. 10.1016/j.jcyt.2014.09.010.
    1. Liu X, Fu X, Dai G, Wang X, Zhang Z, Cheng H, et al. Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy. J Transl Med. 2017;15(1):48. 10.1186/s12967-017-1149-0.
    1. Chen G, Wang Y, Xu Z, Fang F, Xu R, Wang Y, et al. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med. 2013;11(1):21. 10.1186/1479-5876-11-21.
    1. Gu J, Huang L, Zhang C, Wang Y, Zhang R, Tu Z, et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther. 2020;11(1):43. 10.1186/s13287-019-1545-x.
    1. Rosenbaum PL, Walter SD, Hanna SE, Palisano RJ, Russell DJ, Raina P, et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA. 2002;288(11):1357–63. 10.1001/jama.288.11.1357.
    1. Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, et al. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015;2015:905874.
    1. Zali A, Arab L, Ashrafi F, Mardpour S, Niknejhadi M, Hedayati-Asl AA, et al. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy. 2015;17(2):232–41. 10.1016/j.jcyt.2014.10.011.
    1. Wang X, Cheng H, Hua R, Yang J, Dai G, Zhang Z, et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013;15(12):1549–62. 10.1016/j.jcyt.2013.06.001.
    1. Shroff G, Gupta A, Barthakur JK. Therapeutic potential of human embryonic stem cell transplantation in patients with cerebral palsy. J Transl Med. 2014;12(1):318. 10.1186/s12967-014-0318-7.
    1. Findikli N, Candan NZ, Kahraman S. Human embryonic stem cell culture: current limitations and novel strategies. Reprod Biomed Online. 2006;13(4):581–90. 10.1016/S1472-6483(10)60648-7.
    1. Luan Z, Liu W, Qu S, du K, He S, Wang Z, et al. Effects of neuroprogenitor cells transplantation in severe cerebral palsy. Cell Transplant. 2012;21(1_suppl):91–8. 10.3727/096368912X633806.
    1. Chen L, Huang H, Xi H, Xie Z, Liu R, Jiang Z, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010;19(2):185–91. 10.3727/096368910X492652.
    1. Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018;27(2):325–34. 10.1177/0963689717729379.
    1. Kang M, Min K, Jang J, Kim SC, Kang MS, Jang SJ, et al. Involvement of immune responses in the efficacy of cord blood cell therapy for cerebral palsy. Stem Cells Dev. 2015;24(19):2259–68. 10.1089/scd.2015.0074.
    1. Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–91. 10.1002/stem.1304.
    1. Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–7. 10.1212/WNL.56.12.1666.
    1. Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E. Stem cell therapy and administration routes after stroke. Transl Stroke Res. 2016;7(5):378–87. 10.1007/s12975-016-0482-6.
    1. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39(5):1569–74. 10.1161/STROKEAHA.107.502047.
    1. Dong H, Li G, Shang C, Yin H, Luo Y, Meng H, et al. Umbilical cord mesenchymal stem cell (UC-MSC) transplantations for cerebral palsy. Am J Transl Res. 2018;10(3):901–6.
    1. Feng J, Offerman E, Lin J, Fisher E, Planchon SM, Sakaie K, et al. Exploratory MRI measures after intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult Scler J Exp Transl Clin. 2019;5(2):2055217319856035.
    1. Chen YY, Zhang X, Lin XF, Zhang F, Duan XH, Zheng CS, et al. DTI metrics can be used as biomarkers to determine the therapeutic effect of stem cells in acute peripheral nerve injury. J Magn Reson Imaging. 2017;45(3):855–62. 10.1002/jmri.25395.
    1. Jirjis MB, Valdez C, Vedantam A, Schmit BD, Kurpad SN. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury. J Neurosurg Spine. 2017;26(2):243–51. 10.3171/2016.5.SPINE151319.
    1. Yoshida S, Hayakawa K, Yamamoto A, Okano S, Kanda T, Yamori Y, et al. Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy. Dev Med Child Neurol. 2010;52(10):935–40. 10.1111/j.1469-8749.2010.03669.x.
    1. Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, De Cock P, et al. Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain. 2005;128(11):2562–77. 10.1093/brain/awh600.
    1. Jiang H, Li X, Jin C, Wang M, Liu C, Chan KC, et al. Early diagnosis of spastic cerebral palsy in infants with periventricular white matter injury using diffusion tensor imaging. Am J Neuroradiol. 2019;40(1):162–8. 10.3174/ajnr.A5914.
    1. Wang S, Fan GG, Xu K, Wang C. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: a DTI tractography study. Eur J Radiol. 2014;83(6):997–1004. 10.1016/j.ejrad.2014.03.010.
    1. Scheck SM, Boyd RN, Rose SE. New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: a systematic review. Dev Med Child Neurol. 2012;54(8):684–96. 10.1111/j.1469-8749.2012.04332.x.
    1. Trivedi R, Gupta RK, Shah V, Tripathi M, Rathore RK, Kumar M, et al. Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study. Pediatr Neurol. 2008;39(5):341–9. 10.1016/j.pediatrneurol.2008.07.012.
    1. Jiang H, Liu H, He H, Yang J, Liu Z, Huang T, et al. Specific white matter lesions related to motor dysfunction in spastic cerebral palsy: a meta-analysis of diffusion tensor imaging studies. J Child Neurol. 2020;35(2):146–54. 10.1177/0883073819879844.
    1. Arrigoni F, Peruzzo D, Gagliardi C, Maghini C, Colombo P, Iammarrone FS, et al. Whole-brain DTI assessment of white matter damage in children with bilateral cerebral palsy: evidence of involvement beyond the primary target of the anoxic insult. Am J Neuroradiol. 2016;37(7):1347–53. 10.3174/ajnr.A4717.

Source: PubMed

3
Předplatit