Effectiveness of nasal highflow in hypercapnic COPD patients is flow and leakage dependent

Jens Bräunlich, Friederike Mauersberger, Hubert Wirtz, Jens Bräunlich, Friederike Mauersberger, Hubert Wirtz

Abstract

Background: Nasal Highflow (NHF) delivers a humidified and heated airflow via nasal prongs. Current data provide evidence for efficacy of NHF in patients with hypoxemic respiratory failure. Preliminary data suggest that NHF may decrease hypercapnia in hypercapnic respiratory failure. The aim of this study was to evaluate the mechanism of NHF mediated PCO2 reduction in patients with chronic obstructive pulmonary disease (COPD).

Methods: In 36 hypercapnic COPD patients (PCO2 > 45 mmHg), hypercapnia was evaluated by capillary gas sampling 1 h after NHF breathing under four conditions A to D with different flow rates and different degrees of leakage (A = 20 L/min, low leakage, two prongs, both inside; B = 40 L/min, low leakage, two prongs, both inside; C = 40 L/min, high leakage, two prongs, one outside and open; D = 40 L/min, high leakage, two prongs, one outside and closed). Under identical conditions, mean airway pressure was measured in the hypopharynx of 10 COPD patients.

Results: Hypercapnia significantly decreased in all patients. In patients with capillary PCO2 > 55 mmHg (n = 26), PCO2 additionally decreased significantly by increased leakage and/or flow rate in comparison to lower leakage/ flow rate conditions (A = 94.2 ± 8.2%; B = 93.5 ± 4.4%; C = 90.5 ± 7.2%; D = 86.8 ± 3.8%). The highest mean airway pressure was observed in patients breathing under condition B (2.3 ± 1.6 mbar; p < 0.05).

Conclusions: This study demonstrates effective PCO2 reduction with NHF therapy in stable hypercapnic COPD patients. This effect does not correlate with an increase in mean airway pressure but with increased leakage and airflow, indicating airway wash out and reduction of functional dead space as important mechanisms of NHF therapy. These results may be useful when considering NHF treatment in hypercapnic COPD patients.

Trial registration: Clinical Trials: NCT02504814; First posted July 22, 2015.

Keywords: COPD; Hypercapnia; Nasal high flow; Type II respiratory failure; Wash-out.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved (414–14-06102014) and registered (ClinicalTrails NCT02504814) by the ethics committee of the Medical School of Leipzig University. All patients gave written informed consent to participate in the study.

Consent for publication

Not applicable.

Competing interests

JB received travel grants and equipment from TNI medical AG (Wuerzburg, Germany). FM declares that he/she has no competing interests. HW received lecture fees from TNI medical AG.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Experimental conditions. A = 20 L/min, low leakage, two prongs, both inside; B = 40 L/min, low leakage, two prongs, both inside; C = 40 L/min, high leakage, two prongs, one outside and open; D = 40 L/min; high leakage, two prongs, one outside and closed
Fig. 2
Fig. 2
Percentage decrease in capillary PCO2 in COPD patients after 1 h of NHF breathing under different experimental conditions. * = p < 0.05 vs. baseline; baseline PCO2 > 55 mmHg, a: n = 14, b: n = 11, c: n = 9, d: n = 9
Fig. 3
Fig. 3
Percentage decrease of capillary PO2 in COPD patients after 1 h of NHF breathing under different experimental conditions. ** = p > 0.05 vs. baseline; baseline PCO2 > 55 mmHg, a: n = 14, b: n = 11, c: n = 9, d: n = 9
Fig. 4
Fig. 4
Changes in mean airway pressure in COPD patients under different experimental conditions. * = p < 0.05 vs. baseline; n = 10

References

    1. Dreher M, Storre JH, Schmoor C, Windisch W. High-intensity versus low-intensity non-invasive ventilation in patients with stable hypercapnic COPD: a randomised crossover trial. Thorax. 2010;65:303–308. doi: 10.1136/thx.2009.124263.
    1. Manley BJ, Manley BJ, Owen LS, Owen LS, Doyle LW, Doyle LW, et al. High-flow nasal cannulae in very preterm infants after extubation. N Engl J Med. 2013;369:1425–1433. doi: 10.1056/NEJMoa1300071.
    1. Maggiore SM, Idone FA, Vaschetto R, Festa R, Cataldo A, Antonicelli F, et al. Nasal high-flow versus Venturi mask oxygen therapy after Extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190:282–288. doi: 10.1164/rccm.201402-0364OC.
    1. Frat J-P, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. Supplementary appendix: high-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Stéphan F, Barrucand B, Petit P, Rézaiguia-Delclaux S, Médard A, Delannoy B, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery. JAMA. 2015;313:2331–2339. doi: 10.1001/jama.2015.5213.
    1. Hernández G, Vaquero C, González P, Subira C, Frutos-Vivar F, Rialp G, et al. Effect of Postextubation high-flow nasal Cannula vs conventional oxygen therapy on Reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315:1354–1361. doi: 10.1001/jama.2016.2711.
    1. Hernández G, Vaquero C, Colinas L, Cuena R, González P, Canabal A, et al. Effect of Postextubation high-flow nasal Cannula vs noninvasive ventilation on Reintubation and Postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316:1565–1574. doi: 10.1001/jama.2016.14194.
    1. Bräunlich J, Beyer D, Mai D, Hammerschmidt S, Seyfarth H-J, Wirtz H. Effects of nasal high flow on ventilation in volunteers, COPD and idiopathic pulmonary fibrosis patients. Respiration. 2013;85:319–325. doi: 10.1159/000342027.
    1. Bräunlich J, Seyfarth H-J, Wirtz H. Nasal high-flow versus non-invasive ventilation in stable hypercapnic COPD: a preliminary report. Multidiscip Respir Med. 2015;10:27. doi: 10.1186/s40248-015-0019-y.
    1. Bräunlich J, Köhler M, Wirtz H. Nasal highflow improves ventilation in patients with COPD. COPD. 2016;11:1077–1085. doi: 10.2147/COPD.S104616.
    1. Jeong JH, Kim DH, Kim SC, Kang C, Lee SH, Kang T-S, et al. Changes in arterial blood gases after use of high-flow nasal cannula therapy in the ED. Am J Emerg Med Elsevier. 2015;33:1344–1349. doi: 10.1016/j.ajem.2015.07.060.
    1. Fraser JF, Spooner AJ, Dunster KR, Anstey CM, Corley A. Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: a randomised crossover trial. Thorax. 2016;71:759–761. doi: 10.1136/thoraxjnl-2015-207962.
    1. Pisani L, Fasano L, Corcione N, Comellini V, Musti MA, Brandao M, et al. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax. 2017;72:373–375. doi: 10.1136/thoraxjnl-2016-209673.
    1. Groves N, Tobin A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care. 2007;20:126–131. doi: 10.1016/j.aucc.2007.08.001.
    1. Parke R, McGuinness S, Eccleston M. Nasal high-flow therapy delivers low level positive airway pressure. Br J Anaesth. 2009;103:886–890. doi: 10.1093/bja/aep280.
    1. Möller W, Celik G, Feng S, Bartenstein P, Meyer G, Oliver E, et al. Nasal high flow clears anatomical dead space in upper airway models. American Physiological Society. 2015;118:1525–1532.
    1. Bräunlich J, Goldner F, Wirtz H. Nasal Highflow eliminates CO2 from lower airways. Respir Physiol Neurobiol. 2017;242:86–88. doi: 10.1016/j.resp.2017.03.012.
    1. Frizzola M, Miller TL, Rodriguez ME, Zhu Y, Rojas J, Hesek A, et al. High-flow nasal cannula: impact on oxygenation and ventilation in an acute lung injury model. Pediatr Pulmonol. 2011;46:67–74. doi: 10.1002/ppul.21326.
    1. Delorme M, Bouchard P-A, Simon M, Simard S, Lellouche F. Effects of high-flow nasal Cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med. 2017;
    1. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ. Effect of catheter flow direction on CO2 removal during tracheal gas insufflation in dogs. J Appl Physiol. 1993;75:1238–1246. doi: 10.1152/jappl.1993.75.3.1238.
    1. Biselli PJC, Kirkness JP, Grote L, Fricke K, Schwartz AR, Smith P, et al. Nasal high-flow therapy reduces work of breathing compared with oxygen during sleep in COPD and smoking controls: a prospective observational study. J Appl Physiol. 2017;122:82–88. doi: 10.1152/japplphysiol.00279.2016.
    1. Roca O, Riera J, Torres F, Masclans JR. High-flow oxygen therapy in acute respiratory failure. Respir Care. 2010;55:408–413.

Source: PubMed

3
Předplatit