Zirconia implants and peek restorations for the replacement of upper molars

José María Parmigiani-Izquierdo, María Eugenia Cabaña-Muñoz, José Joaquín Merino, Arturo Sánchez-Pérez, José María Parmigiani-Izquierdo, María Eugenia Cabaña-Muñoz, José Joaquín Merino, Arturo Sánchez-Pérez

Abstract

Background: One of the disadvantages of the zirconia implants is the lack of elasticity, which is increased with the use of ceramic or zirconia crowns. The consequences that could result from this lack of elasticity have led to the search for new materials with improved mechanical properties.

Case presentation: A patient who is a 45-year-old woman, non-smoker and has no medical record of interest with a longitudinal fracture in the palatal root of molar tooth 1.7 and absence of tooth 1.6 was selected in order to receive a zirconia implant with a PEEK-based restoration and a composite coating. The following case report describes and analyses treatment with zirconia implants in molars following a flapless surgical technique. Zirconia implants are an alternative to titanium implants in patients with allergies or who are sensitive to metal alloys. However, one of the disadvantages that they have is their lack of elasticity, which increases with the use of ceramic or zirconia crowns. The consequences that can arise from this lack of elasticity have led to the search for new materials with better mechanical properties to cushion occlusal loads. PEEK-based restoration in implant prosthetics can compensate these occlusal forces, facilitating cushioning while chewing.

Conclusion: This procedure provides excellent elasticity and resembles natural tooth structure. This clinical case suggests that PEEK restorations can be used in zirconia implants in dentistry.

Keywords: Ceramics; Dental implants; Elastic modudus; Osseointegration; Polyether ketone; Zirconia.

Figures

Fig. 1
Fig. 1
Diagnostic radiographic exploration previous to treatment
Fig. 2
Fig. 2
Flapless surgical technique, atraumatic surgical procedure for zirconium implants using the circular scalpel (a)–sharp, clean cut without bleeding (b)
Fig. 3
Fig. 3
Final restaurations: The parallelism of the implants is achieved by carving the non-submerged part a occlusal view and b lingual view
Fig. 4
Fig. 4
Follow-up after 1 year, no radiographic sign was appreciating and the osseointegration was satisfactory
Fig. 5
Fig. 5
Periapical X ray after 1 year of follow-up, the bone was stable and no sign of peri-implantitis was shown

References

    1. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand j plast reconstr surg suppl. 1977;16:1–132.
    1. Parmigiani-Izquierdo JM. TécnicaAtraumática en Implantología. Rev esp odontoestomatológica implant. 11:30–5.
    1. Parmigiani-Izquierdo JM, Sánchez-Pérez A, Cabaña-Muñoz ME. A pilot study of postoperative pain felt after two implant surgery techniques: a randomized blinded prospective clinical study. Int j oral maxillofac implants. 2013;28:1305–1310. doi: 10.11607/jomi.3027.
    1. Sedarat C, Harmand MF, Naji A, Nowzari H. In vitro kinetic evaluation of titanium alloy biodegradation. J periodontal res. 2001;36:269–274. doi: 10.1034/j.1600-0765.2001.360501.x.
    1. Chaturvedi TP. An overview of the corrosion aspect of dental implants (titanium and its alloys) Indian j dent res off publ indian soc dent res. 2009;20:91–98. doi: 10.4103/0970-9290.49068.
    1. Wenz HJ, Bartsch J, Wolfart S, Kern M. Osseointegration and clinical success of zirconia dental implants: a systematic review. Int j prosthodont. 2008;21:27–36.
    1. Andreiotelli M, Wenz HJ, Kohal R-J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin oral implants res. 2009;20(Suppl 4):32–47. doi: 10.1111/j.1600-0501.2009.01785.x.
    1. Stadlinger B, Hennig M, Eckelt U, Kuhlisch E, Mai R. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int j oral maxillofac surg. 2010;39:585–592. doi: 10.1016/j.ijom.2010.01.015.
    1. Gahlert M, Burtscher D, Pfundstein G, Grunert I, Kniha H, Roehling S. Dental zirconia implants up to 3 years in function: a retrospective clinical study and evaluation of prosthetic restorations and failures. Int j oral maxillofac implants. 2013;28:896–904. doi: 10.11607/jomi.2211.
    1. Gahlert M, Kniha H, Weingart D, Schild S, Gellrich N-C, Bormann K-H. A prospective clinical study to evaluate the performance of zirconium dioxide dental implants in single-tooth gaps. Clin oral implants res. 1 de abril de 2015;
    1. Gahlert M, Roehling S, Sprecher CM, Kniha H, Milz S, Bormann K. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin oral implants res. 2012;23:281–286. doi: 10.1111/j.1600-0501.2011.02157.x.
    1. Bormann K-H, Gellrich N-C, Kniha H, Dard M, Wieland M, Gahlert M. Biomechanical evaluation of a microstructured zirconia implant by a removal torque comparison with a standard Ti-SLA implant. Clin oral implants res. 2012;23:1210–1216. doi: 10.1111/j.1600-0501.2011.02291.x.
    1. Oliva J, Oliva X, Oliva JD. One-year follow-up of first consecutive 100 zirconia dental implants in humans: a comparison of 2 different rough surfaces. Int j oral maxillofac implants. 2007;22:430–435.
    1. Siewert B, Parra M. Eine neue Werkstoffklasse in der Zahnmedizin: PEEK als Gerüstmaterial bei 12-gliedrigen implantatgetragenen Brücken. Z zahnärztl implant. 29:148–59.
    1. Callís EM. Fundamentos de la estética bucal en el grupo anterior. Quintessence; 2001. 401 p.
    1. Steger E. Sistema CAD/CAM Zirkonzahn. Quintessenza odontotec. 2013;10:70–82.
    1. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J clin periodontol. 2002;29 Suppl 3:197-212-233.
    1. Duyck J, Vandamme K. The effect of loading on peri-implant bone: a critical review of the literature. J oral rehabil. 2014;41(10):783–794. doi: 10.1111/joor.12195.
    1. Frost HM. Perspectives: bone’s mechanical usage windows. Bone miner. 1992;19:257–271. doi: 10.1016/0169-6009(92)90875-E.
    1. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin orthop. 1992;274:124–134.
    1. Ponnappan RK, Serhan H, Zarda B, Patel R, Albert T, Vaccaro AR. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine j off j north am spine soc. 2009;9:263–267. doi: 10.1016/j.spinee.2008.08.002.
    1. Schwitalla AD, Spintig T, Kallage I, Müller W-D. Flexural behavior of PEEK materials for dental application. Dent mater off publ acad dent mater. 2015;31:1377–1384.
    1. Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Müller WD. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J biomech. 2015;48:1–7. doi: 10.1016/j.jbiomech.2014.11.017.
    1. Rosentritt M, Preis V, Behr M, Sereno N, Kolbeck C. Shear bond strength between veneering composite and PEEK after different surface modifications. Clin oral investig. 2015;19:739–744. doi: 10.1007/s00784-014-1294-2.

Source: PubMed

3
Předplatit