Deciphering the Biological Mechanisms Underlying the Genome-Wide Associations between Computerized Device Use and Psychiatric Disorders

Frank R Wendt, Carolina Muniz Carvalho, Gita A Pathak, Joel Gelernter, Renato Polimanti, Frank R Wendt, Carolina Muniz Carvalho, Gita A Pathak, Joel Gelernter, Renato Polimanti

Abstract

Computerized device use (CDU) is societally ubiquitous but its effects on mental health are unknown. We performed genetic correlation, Mendelian randomization, and latent causal variable analyses to identify shared genetic mechanisms between psychiatric disorders (Psychiatric Genomics Consortium; 14,477 < N < 150,064) and CDU (UK Biobank; N = 361,194 individuals). Using linkage disequilibrium score regression, we detected strong genetic correlations between "weekly usage of mobile phone in last 3 months" (PhoneUse) vs. attention deficit hyperactivity disorder (ADHD; rg = 0.425, p = 4.59 × 10-29) and "plays computer games" (CompGaming) vs. schizophrenia (SCZ; rg = -0.271, p = 7.16 × 10-26). Focusing on these correlations, we used two sample MRs to detect the causal relationships between trait pairs by treating single nucleotide polymorphisms as non-modifiable risk factors underlying both phenotypes. Significant bidirectional associations were detected (PhoneUse→ADHD β = 0.132, p = 1.89 × 10-4 and ADHD→PhoneUse β = 0.084, p = 2.86 × 10-10; CompGaming→SCZ β = -0.02, p = 6.46 × 10-25 and CompGaming→SCZ β = -0.194, p = 0.005) and the latent causal variable analyses did not support a causal relationship independent of the genetic correlations between these traits. This suggests that molecular pathways contribute to the genetic overlap between these traits. Dopamine transport enrichment (Gene Ontology:0015872, pSCZvsCompGaming = 2.74 × 10-10) and DRD2 association (pSCZ = 7.94 × 10-8; pCompGaming = 3.98 × 10-25) were detected in SCZ and CompGaming and support their negative correlative relationship. FOXP2 was significantly associated with ADHD (p = 9.32 × 10-7) and PhoneUse (p = 9.00 × 10-11) with effect directions concordant with their positive genetic correlation. Our study demonstrates that epidemiological associations between psychiatric disorders and CDUs are due, in part, to the molecular mechanisms shared between them rather than a causal relationship. Our findings imply that biological mechanisms underlying CDU contribute to the psychiatric phenotype manifestation.

Keywords: DRD2; FOXP2; Mendelian randomization; attention deficit hyperactivity disorder; psychiatry; schizophrenia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Linkage disequilibrium score regression genetic correlations for computerized device use and psychiatric disorder (attention deficit hyperactivity disorder (ADHD), alcohol dependence, autism spectrum disorder, bipolar disorder, anorexia nervosa, major depressive disorder, post-traumatic stress disorder, and schizophrenia) pairs. Large asterisks indicate genetic correlations surviving multiple testing correction (p = 1.25 × 10−3), while small asterisks indicate nominally significant genetic correlations. Genetic correlations significant after Bonferroni correction are provided in Table S1.
Figure 2
Figure 2
Genes significantly associated with both schizophrenia (SCZ) and UKB Field ID 2237 “plays computer games” (CompGaming) after Bonferroni correction (p < 2.64 × 10−6). The difference in per-gene effects (z-scoreCompGaming minus z-scoreSCZ) on each trait is color-coded.
Figure 3
Figure 3
Scatterplots showing gene set enrichment (a; N = 221 gene sets) and linkage disequilibrium score regression (b; N = 224 traits) results for gene sets and UK Biobank traits with nominally significant differences between schizophrenia and CompGaming (UKB Field ID 2237 “plays computer games”). Gene sets are labeled with gene ontology (GO), reactome (R), systematic identifiers (M), or specific study identifiers (last name of first author); the top five most significant differences in genetic correlation are labeled. Detailed results for gene set enrichment and genetic correlations surviving multiple testing correction are provided in Tables S7–S10.
Figure 4
Figure 4
Scatterplots of genetic correlation results for attention deficit hyperactivity disorder (ADHD) and PhoneUse, for both sexes combined (a; N = 841 traits), females only (b; N = 478 traits), and males only (c; N = 435 traits). Labeled traits are among the top ten most significant genetic correlations in ADHD and PhoneUse (UKB Field ID 1120 “weekly usage of mobile phone in last three months”). Detailed genetic correlation results surviving multiple testing correction are provided in Tables S21–S23.

References

    1. Papp D.S., Alberts D.S., Tuyahov A. Historical impacts of information technologies: An overview. In: Alberts D.S., Papp D.S., editors. The Information Age: An Anthology on Its Impact and Consequences. CreateSpace Independent Publishing Platform; Scotts Valley, CA, USA: 2012. pp. 13–35.
    1. Byun Y.H., Ha M., Kwon H.J., Hong Y.C., Leem J.H., Sakong J., Kim S.Y., Lee C.G., Kang D., Choi H.D., et al. Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: A longitudinal study. PLoS ONE. 2013;8:e59742. doi: 10.1371/journal.pone.0059742.
    1. Fernandez C., de Salles A.A., Sears M.E., Morris R.D., Davis D.L. Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environ. Res. 2018;167:694–699. doi: 10.1016/j.envres.2018.05.013.
    1. Forouharmajd F., Pourabdian S., Ebrahimi H. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves. Int. J. Prev. Med. 2018;9:40.
    1. Pisano S., Muratori P., Senese V.P., Gorga C., Siciliano M., Carotenuto M., Iuliano R., Bravaccio C., Signoriello S., Gritti A., et al. Phantom phone signals in youths: Prevalence, correlates and relation to psychopathology. PLoS ONE. 2019;14:e0210095. doi: 10.1371/journal.pone.0210095.
    1. You Z., Zhang Y., Zhang L., Xu Y., Chen X. How does self-esteem affect mobile phone addiction? The mediating role of social anxiety and interpersonal sensitivity. Psychiatry Res. 2019;271:526–531. doi: 10.1016/j.psychres.2018.12.040.
    1. Zheng F., Gao P., He M., Li M., Wang C., Zeng Q., Zhou Z., Yu Z., Zhang L. Association between mobile phone use and inattention in 7102 chinese adolescents: A population-based cross-sectional study. BMC Public Health. 2014;14:1022. doi: 10.1186/1471-2458-14-1022.
    1. Wayne N.L., Miller G.A. Impact of gender, organized athletics, and video gaming on driving skills in novice drivers. PLoS ONE. 2018;13:e0190885. doi: 10.1371/journal.pone.0190885.
    1. Stenseng F., Hygen B.W., Wichstrom L. Time spent gaming and psychiatric symptoms in childhood: Cross-sectional associations and longitudinal effects. Eur. Child Adolesc. Psychiatry. 2019:1–9. doi: 10.1007/s00787-019-01398-2.
    1. Matar Boumosleh J., Jaalouk D. Depression, anxiety, and smartphone addiction in university students—A cross sectional study. PLoS ONE. 2017;12:e0182239. doi: 10.1371/journal.pone.0182239.
    1. Suenderhauf C., Walter A., Lenz C., Lang U.E., Borgwardt S. Counter striking psychosis: Commercial video games as potential treatment in schizophrenia? A systematic review of neuroimaging studies. Neurosci. Biobehav. Rev. 2016;68:20–36. doi: 10.1016/j.neubiorev.2016.03.018.
    1. Ebrahim S., Davey Smith G. Mendelian randomization: Can genetic epidemiology help redress the failures of observational epidemiology? Hum. Genet. 2008;123:15–33. doi: 10.1007/s00439-007-0448-6.
    1. Lawlor D.A., Harbord R.M., Sterne J.A., Timpson N., Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008;27:1133–1163. doi: 10.1002/sim.3034.
    1. Polimanti R., Amstadter A.B., Stein M.B., Almli L.M., Baker D.G., Bierut L.J., Bradley B., Farrer L.A., Johnson E.O., King A., et al. A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder. Genome Med. 2017;9:99. doi: 10.1186/s13073-017-0491-4.
    1. Sullivan P.F., Agrawal A., Bulik C.M., Andreassen O.A., Borglum A.D., Breen G., Cichon S., Edenberg H.J., Faraone S.V., Gelernter J., et al. Psychiatric genomics: An update and an agenda. Am. J. Psychiatry. 2018;175:15–27. doi: 10.1176/appi.ajp.2017.17030283.
    1. Bycroft C., Freeman C., Petkova D., Band G., Elliott L.T., Sharp K., Motyer A., Vukcevic D., Delaneau O., O’Connell J., et al. The uk biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 10.1038/s41586-018-0579-z.
    1. Demontis D., Walters R.K., Martin J., Mattheisen M., Als T.D., Agerbo E., Baldursson G., Belliveau R., Bybjerg-Grauholm J., Baekvad-Hansen M., et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019;51:63–75. doi: 10.1038/s41588-018-0269-7.
    1. Walters R.K., Polimanti R., Johnson E.C., McClintick J.N., Adams M.J., Adkins A.E., Aliev F., Bacanu S.A., Batzler A., Bertelsen S., et al. Transancestral gwas of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 2018;21:1656–1669. doi: 10.1038/s41593-018-0275-1.
    1. Duncan L., Yilmaz Z., Gaspar H., Walters R., Goldstein J., Anttila V., Bulik-Sullivan B., Ripke S., Thornton L., Hinney A., et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry. 2017;174:850–858. doi: 10.1176/appi.ajp.2017.16121402.
    1. Grove J., Ripke S., Als T.D., Mattheisen M., Walters R.K., Won H., Pallesen J., Agerbo E., Andreassen O.A., Anney R., et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019;51:431–444. doi: 10.1038/s41588-019-0344-8.
    1. Stahl E.A., Breen G., Forstner A.J., McQuillin A., Ripke S., Trubetskoy V., Mattheisen M., Wang Y., Coleman J.R.I., Gaspar H.A., et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019;51:793–803. doi: 10.1038/s41588-019-0397-8.
    1. Wray N.R., Ripke S., Mattheisen M., Trzaskowski M., Byrne E.M., Abdellaoui A., Adams M.J., Agerbo E., Air T.M., Andlauer T.M.F., et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018;50:668–681. doi: 10.1038/s41588-018-0090-3.
    1. Duncan L.E., Ratanatharathorn A., Aiello A.E., Almli L.M., Amstadter A.B., Ashley-Koch A.E., Baker D.G., Beckham J.C., Bierut L.J., Bisson J., et al. Largest gwas of ptsd (n 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry. 2018;23:666–673. doi: 10.1038/mp.2017.77.
    1. Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427. doi: 10.1038/nature13595.
    1. Bulik-Sullivan B., Finucane H.K., Anttila V., Gusev A., Day F.R., Loh P.R., Duncan L., Perry J.R., Patterson N., Robinson E.B., et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015;47:1236–1241. doi: 10.1038/ng.3406.
    1. Bulik-Sullivan B.K., Loh P.R., Finucane H.K., Ripke S., Yang J., Patterson N., Daly M.J., Price A.L., Neale B.M. Ld score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291–295. doi: 10.1038/ng.3211.
    1. Pierce B.L., Burgess S. Efficient design for mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 2013;178:1177–1184. doi: 10.1093/aje/kwt084.
    1. Howard D.M., Adams M.J., Clarke T.K., Hafferty J.D., Gibson J., Shirali M., Coleman J.R.I., Hagenaars S.P., Ward J., Wigmore E.M., et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019;22:343–352. doi: 10.1038/s41593-018-0326-7.
    1. Pardinas A.F., Holmans P., Pocklington A.J., Escott-Price V., Ripke S., Carrera N., Legge S.E., Bishop S., Cameron D., Hamshere M.L., et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 2018;50:381–389. doi: 10.1038/s41588-018-0059-2.
    1. Euesden J., Lewis C.M., O’Reilly P.F. Prsice: Polygenic risk score software. Bioinformatics. 2015;31:1466–1468. doi: 10.1093/bioinformatics/btu848.
    1. Boef A.G., Dekkers O.M., Vandenbroucke J.P., le Cessie S. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding. J. Clin. Epidemiol. 2014;67:1258–1264. doi: 10.1016/j.jclinepi.2014.05.019.
    1. Crown W.H., Henk H.J., Vanness D.J. Some cautions on the use of instrumental variables estimators in outcomes research: How bias in instrumental variables estimators is affected by instrument strength, instrument contamination, and sample size. Value Health. 2011;14:1078–1084. doi: 10.1016/j.jval.2011.06.009.
    1. Polimanti R., Gelernter J., Stein D.J. Genetically determined schizophrenia is not associated with impaired glucose homeostasis. Schizophr. Res. 2018;195:286–289. doi: 10.1016/j.schres.2017.10.033.
    1. Polimanti R., Kaufman J., Zhao H., Kranzler H.R., Ursano R.J., Kessler R.C., Stein M.B., Gelernter J. Trauma exposure interacts with the genetic risk of bipolar disorder in alcohol misuse of us soldiers. Acta Psychiatr. Scand. 2018;137:148–156. doi: 10.1111/acps.12843.
    1. Bowden J., Davey Smith G., Haycock P.C., Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016;40:304–314. doi: 10.1002/gepi.21965.
    1. Bowden J., Del Greco M.F., Minelli C., Davey Smith G., Sheehan N., Thompson J. A framework for the investigation of pleiotropy in two-sample summary data mendelian randomization. Stat. Med. 2017;36:1783–1802. doi: 10.1002/sim.7221.
    1. Hartwig F.P., Davey Smith G., Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017;46:1985–1998. doi: 10.1093/ije/dyx102.
    1. Zhao Q., Wang J., Hemani G., Bowden J., Small D.S. Statistical inference in two-sample summary data mendelian randomization using robust adjusted profile score. arXiv. 20181801.09652
    1. Burgess S., Bowden J., Fall T., Ingelsson E., Thompson S.G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28:30–42. doi: 10.1097/EDE.0000000000000559.
    1. Verbanck M., Chen C.Y., Neale B., Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat. Genet. 2018;50:693–698. doi: 10.1038/s41588-018-0099-7.
    1. Hemani G., Zheng J., Elsworth B., Wade K.H., Haberland V., Baird D., Laurin C., Burgess S., Bowden J., Langdon R., et al. The mr-base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408.
    1. Burgess S., Thompson S.G. Multivariable mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015;181:251–260. doi: 10.1093/aje/kwu283.
    1. Yavorska O.O., Burgess S. Mendelianrandomization: An r package for performing mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017;46:1734–1739. doi: 10.1093/ije/dyx034.
    1. O’Connor L.J., Price A.L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 2018;50:1728–1734. doi: 10.1038/s41588-018-0255-0.
    1. de Leeuw C.A., Mooij J.M., Heskes T., Posthuma D. Magma: Generalized gene-set analysis of gwas data. PLoS Comput. Biol. 2015;11:e1004219. doi: 10.1371/journal.pcbi.1004219.
    1. Watanabe K., Taskesen E., van Bochoven A., Posthuma D. Functional mapping and annotation of genetic associations with fuma. Nat. Commun. 2017;8:1826. doi: 10.1038/s41467-017-01261-5.
    1. Muniz Carvalho C., Wendt F., Maihofer A., Stein D., Stein M., Sumner J., Hemmings S., Nievergelt C., Koenen K., Gelernter J., et al. Dissecting the association of c-reactive protein levels with ptsd, traumatic events, and social support. medRxiv. 2019 doi: 10.1101/19009134.
    1. Muniz Carvalho C., Wendt F.R., Stein D.J., Stein M.B., Gelernter J., Belangero S.I., Polimanti R. Metabolome-wide mendelian randomization analysis of emotional and behavioral responses to traumatic stress. bioRxiv. 2019:bioRxiv:545442.
    1. Polimanti R., Ratanatharathorn A., Maihofer A.X., Choi K.W., Stein M.B., Morey R.A., Logue M.W., Nievergelt C.M., Stein D.J., Koenen K.C., et al. Association of economic status and educational attainment with posttraumatic stress disorder: A mendelian randomization study. JAMA Netw. Open. 2019;2:e193447. doi: 10.1001/jamanetworkopen.2019.3447.
    1. Breiderhoff T., Christiansen G.B., Pallesen L.T., Vaegter C., Nykjaer A., Holm M.M., Glerup S., Willnow T.E. Sortilin-related receptor sorcs3 is a postsynaptic modulator of synaptic depression and fear extinction. PLoS ONE. 2013;8:e75006. doi: 10.1371/journal.pone.0075006.
    1. Flores A., Valls-Comamala V., Costa G., Saravia R., Maldonado R., Berrendero F. The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology. 2014;39:2732–2741. doi: 10.1038/npp.2014.146.
    1. Chen X.S., Reader R.H., Hoischen A., Veltman J.A., Simpson N.H., Francks C., Newbury D.F., Fisher S.E. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci. Rep. 2017;7:46105. doi: 10.1038/srep46105.
    1. Xu S., Liu P., Chen Y., Chen Y., Zhang W., Zhao H., Cao Y., Wang F., Jiang N., Lin S., et al. Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proc. Natl. Acad. Sci. USA. 2018;115:8799–8804. doi: 10.1073/pnas.1721820115.
    1. Weinstein A.M. Computer and video game addiction-a comparison between game users and non-game users. Am. J. Drug Alcohol Abus. 2010;36:268–276. doi: 10.3109/00952990.2010.491879.
    1. Martin J., Walters R.K., Demontis D., Mattheisen M., Lee S.H., Robinson E., Brikell I., Ghirardi L., Larsson H., Lichtenstein P., et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2018;83:1044–1053. doi: 10.1016/j.biopsych.2017.11.026.
    1. Jost L., Fuchs M., Loeffler M., Thiery J., Kratzsch J., Berger T., Engel C. Associations of sex hormones and anthropometry with the speaking voice profile in the adult general population. J. Voice. 2018;32:261–272. doi: 10.1016/j.jvoice.2017.06.011.
    1. Perez-Pouchoulen M., Toledo R., Garcia L.I., Perez-Estudillo C.A., Coria-Avila G.A., Hernandez M.E., Carrillo P., Manzo J. Androgen receptors in purkinje neurons are modulated by systemic testosterone and sexual training in a region-specific manner in the male rat. Physiol. Behav. 2016;156:191–198. doi: 10.1016/j.physbeh.2016.01.027.
    1. Mehta P.H., Welker K.M., Zilioli S., Carre J.M. Testosterone and cortisol jointly modulate risk-taking. Psychoneuroendocrinology. 2015;56:88–99. doi: 10.1016/j.psyneuen.2015.02.023.
    1. Richardson T.G., Harrison S., Hemani G., Davey Smith G. An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. Elife. 2019;8:e43657. doi: 10.7554/eLife.43657.

Source: PubMed

3
Předplatit